如图,点A,B,C在圆O上,连接OC,OB:求证:角A=角B 角C

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:37:46
如图,点A,B,C在圆O上,连接OC,OB:求证:角A=角B 角C
如图,圆O与圆O'交于A,B两点,点O在圆O'上,圆O'的弦OC交AB于D

∵∠OBA=∠OCA,且∠OAB=∠OCB,又∵∠OBA=∠OAB,∴∠OBA=∠OCB,∵∠BOC=∠BOC,∴△OBD∽△OCB(A.A.),∴r/OC=BD/BC,∴r×BC=OC×BD,同理,

如图 a,b,c三点在圆o上,角aoc=100°,求角abc

/>在优弧AC上取一点D,连接AD,CD则∠ADC=1/2∠AOC∵∠AOC=100°∴∠ADC=50°∴∠ABC=180-50=130°再问:为什么∠ABC=180-50=130°再答:圆内接四边形

如图,圆o的直径AB把圆o分成上、下两个半圆,点c在上半圆上运动(不运动至A,B点),过C作弦CD垂直AB

虽然C点在上半圆运动,但由于角平分线和等腰三角形的共同作用,由OP‖CD,所以OP⊥AB,P点的位置不变我在做同一道题目诶

如图,AB为圆O的直径,点C为圆O上异于A、B的一点,PA⊥平面ABC,点A在PB、PC上的射影分别为点E、F.

证明:(1)∵PA⊥面ABC,BC⊂面ABC,∴BC⊥PA,又AB是圆O的直径,∴BC⊥AC所以BC⊥面PAC,又因AF⊂面PAC,所以AF⊥BC,又因AF⊥PC,所以AF⊥面PBC,又因PB⊂面PB

如图,圆O与圆P相交于A.B两点.圆P经过圆心O,点C是圆P的优弧AB上任意一点,连AB.AC,BC,OC.(1)指出

答案是这样的:(1)指出图中与角ACO相等的一个角;∠ACO=∠BCO(2)当点C在圆P什么位置时,直线CA与圆O相切?说明理由.当点在圆O上点D位置时,直线CA与圆O相切连接OP并延长,交圆O于点D

如图,已知AB是圆O的直径,点P在弧AB上(不含点A,B),把△AOP沿OP对着,点A的对应点C正好落在圆O上

1.结论OP∥BC是成立的∵△APO≌△CPO,∴∠APO=∠CPO∴∠APC=2∠APO∠APC和∠ABC都是弧AC对应的圆周角∴∠ABC=∠APC=2∠APO∵∠POB=∠PAO+∠APO=2∠A

如图,点A,B,C,D均在⊙O上,则∠A+∠B+∠C+∠E等于多少度?为什么

图在哪里?还有,∠D你错写成∠E了.再问:额,题目D后面还有一个E,再答:你好,五角星的内角和就是180°,不需要这个圆也是180°。之所以给了这个圆,估计是想让你更好判断出来,因为五个圆周角相加正好

如图(1),点A、B、C在⊙O上,连接OC、OB:

(1)∠A+∠B+∠C+∠O=360因为∠A是圆周角,所以有2∠A+∠O=360,代入上式,可得∠A+∠B+∠C+∠O=2∠A+∠O,整理,有∠A=∠B+∠C(2)连接OA,因为OA=OC,OB=OA

已知:如图,P是圆O外一点,PA、PB分别切圆O于A、B,连OP,交圆O于C,连AC、BC,D是优弧AB上一点,∠ADC

连结CE,BD,∵PA、PB分别切圆O于A、B,∴弧AC=弧BC∴∠CDB=∠ADC=30°,又∵∠EFD=∠BFD=Rt∠,DF=DF∴△BFD≌△EFD∴EF=BF=1/2BE=2,BD=ED在R

如图1,已知点A(0,2),圆O的半径为1,点B在X轴上.若圆B过点C(2,0)且与圆A外切,求B点坐标

设B(x,0)则圆B半径为2-x所以圆心之间的距离等于两圆半径相加圆A半径为1圆B半径为2-xAB距离为根号下(x^2+4)则有等式2-x+1=根号下(x^2+4)解方程得x=5/6

如图,从圆O外一点引圆O的切线PE,PF,点C在劣弧EF上,过C点作圆O的切线交PE于A交PF与于B,若三角形APB的周

应用切线长定理因为BF,BC为切线,所以BF=BC同理AC=AE所以三角形周长=PB+BA+AP=PB+BC+CA+AP=PB+BF+AE+PA=PF+PE=18因为PF,PE是切线,所以PF=PE所

如图.点A.B.C.D.E均在圆O上.则角A 角B 角C 角D 角E等于多少度

角A角B角C角D角E等于36度------------------------如图角A=1/2*角COD角B=1/2*角DOE角C=1/2*角AOE角D=1/2*角AOB角E=1/2*角BOC角A&n

如图,点A、B、C、D在⊙O上,AB=DC,AC与BD相等吗?为什么?

AC与BD相等.理由如下:∵AB=DC,∴弧AB=弧CD,∴弧AB+弧BC=弧BC+弧CD,即弧AC=弧BD,∴AC=BD.

如图,已知直线AB经过圆O的圆心,且与圆O相交于A,B两点,点C在圆O上且∠AOC=30°点P是直线AB上一个动点

符合条件的点P共有三个.(1)当点P在BA延长线上P1点时:若OQ=P1Q,则∠QOP1=∠QP1O,设∠COQ=X,则∠QP1O=X+30.∠OCQ=X+60=∠OQC. 则:2(X+60