如图,点A,E,C在同一直线上,EF,EG分别是角AEB,角BEC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:55:29
AB=CD推出AD-AB=AD-CD即AC=BD而E为CB中点推出CE=BE那么AC+CE=BD+BE,即AE=DE所以E也同样为AD中点
是.因为∠BDE=∠BAE+∠ABD,∠CDE=∠CAE+∠ACD由∠BAE=∠CAE,∠BDE=∠CDE,所以∠ABD,=∠ACD所以可得三角形ABD全等于ACD所以DB=DC所以∠DBC=∠DCB
∵∠DBE=1/2(∠C+∠CAB)=45+∠DAB∴∠DBE=∠ADB+∠DAB又∵∠ADB+∠DAB=45+∠DAB∴∠ADB=45
1∵∠ACB=∠DCE∴∠BCD=∠ACE∵AC=BC,CE=AC∴三角形ACE≌三角形BCD(SAS)∴AE=BD(全等三角形对应边相等)2等边三角形FGC∵三角形BCD≌三角形ACE∴∠BDC=∠
在△AFD和△BEC中:AD=CB∠B=∠D,BE=DF,∴△BEC≌△AFD(SAA)∴A=C∴AD∥BC
这道题需要用排列组合的知识.首先ABC是一条,其余的直线只能含有ABC三点中的一个来与DE中的一个来匹配,所以就是3种选择*两种选择=6.
∵△ABC和△DEC都是等边三角形∴BC=ACCD=CE∠ACB=∠DCE=60°∠BCD=∠ACB+∠ACD∠ACE=∠DCE+∠ACD∴∠BCD=∠ACE在△ABC和△DEC中,BC=AC∠BCD
证明:∵AD=EB∴AD-BD=EB-BD,即AB=ED 又∵BC∥DF,∴∠CBD=∠FDB
由题可知点A、B、C在同一直线上,D、E和A、B、C不在同一直线上对D点,可分别与A、B、C、E各画一条不同直线,一共4条对E点,可分别与A、B、C各画一条不同直线,一共3条对A、B、C三点,他们在同
证明:∵AD∥BC,∴∠A=∠C,∵AE=CF∴AE+EF=CF+EF, 即AF=CE,在△ADF和△CBE中,AD=BC∠A=∠CAF=CF,∴△ADF≌△CBE(SAS),∴BE=DF.
很简单,连接BE,DF在∠DAC=∠BCA所以,∠EAD=∠BCF另外AE=CFDA=BC所以三角形EAD全等于三角形BCF所以∠E=∠F所以在四边形EDFB中,内错角相等两直线DE//BF
1.垂直,√3按照小聪的思路作完图之后,GF平行于AB平行于CD,P又是中点,角HDP=角GFP,角HPD=角GPE,P为中点,所以三角形HDP全等于三角形GFP,这样DH=GF,所以CH=CG,则有
根号(a^2+b^2)再问:^是什么意思再答:平方
证明:∵AB∥CD,∴∠BAC=∠ECD,在△BAC和△ECD中AB=EC∠BAC=∠ECDAC=CD,∴△BAC≌△ECD(SAS),∴CB=ED.
(1)∵AB=20,BC=8,∴AC=AB+BC=28,∵点A、B、C在同一直线上,M、N分别是AC、BC的中点,∴MC=12AC=14,NC=12BC=4,∴MN=MC-NC=14-4=10;(2)
证明:已知条件:AD∥BC,AE=CF,AD=BC,求证结论:∠B=∠D.证明:∵AE=CF,∴AE+EF=CF+EF.∴AF=CE.∵AD∥BC,∴∠A=∠C.在△ADF和△CBE中AD=BC,∠A
每两点有一条线段,5个点有5*4/2=10条不同的线段,ABACADAEBCBDBECDCEDE每个点为端点有2条射线,5个点有5*2=10条不同的射线,由于分别以A、D为端点的射线各有一条不能用字母
平行,再问:我知道,可是要过程再答:角1与角什么互余?再问:角B再答:角1与角B互余,角AcB为90度所以角A互余于角BCE,所以角1等于角B等于角BCE,角B与角B0E为内错角,内错角相等两直线平行
证明:∵AF=DC,∴AC=DF,又∵AB=DE,∠A=∠D,∴△ACB≌△DEF,∴∠ACB=∠DFE,∴BC∥EF.