如图,点ABCD在圆O上,AC垂直于BD于点E,过点O作OF垂直于BC于点F
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 13:05:29
∵ABCD是矩形,∴AD=BC=2,∴AE=AD-DE=1,AC=√(AB^2+BC^2)=√6,∴CE=√(CD^2+DE^2)=√3,连接OE,∵CE是切线,∴OE⊥CE,在RTΔOCE中,设OE
连接EO,FO;在三角形AOE和COF中;角OCF=OAE,AO=CO,AE=CF,则两三角形全等;角AOE=FOC;因E、F分别在AC的两侧,所以两角相等必是对顶角,则E、O、F必在一条线上;看在又
证明:(1)在△AOE与△COF中OA=OC(平行四边形对角线互相平分)①又BE//DF从而∠AEO=∠CFO∠EAO=∠FCO(两直线平行,内错角相等)②由①②得△AOE≌△COF(角,角,边)∴A
因为AC,BD为正方形ABCD的对角线则AC⊥BDAO=CO角BAC=45º因为EG⊥AC三角形AEG为等腰直角三角形AG=EG因为EF⊥BD所以EFOG为矩形EF=OG因此EG+EF=OG
因为:对角线AC交BD于点o所以o是ac中点所以ao=oc又因为aode是平行四边形所以ao平行且等于de所以oc也平行且等于de即四边形dcoe是平行四边形
题目没错角AEC=90+角DCE=90+角ACB然后要证明CE与⊙O的位置关系(明显是相切)只需证明CE与EO相垂直即角CEO为90°即角EOC+角ECO为90°即角EOC=角DCE+角ACB即角EO
∵ABCD是平行四边形∴OA=OC,OB=OD又∵OE=OF∴四边形BEDF的对角线互相平分∴四边形BEDF是中心对称图形你题错了,应该是BEDF
证明:因为矩形ABCD中,OA=OB=OC=OD所以点A、B、C、D在以O为圆心的圆上再问:请问我还可以问你别的题吗?好的话都选你再答:当然可以再问:已知在○O中,A,B是线段CD与圆的两个交点,且A
∵四边形ABCD为正方形,对角线AC、BD交于点O∴AO=DO=BO=CO,∠AOB=∠BOC=∠COD=∠AOD又∵DE=CF∴OE=OF∴△AOE≌△DOF(SAS)
①⊿BEP等腰直角,AEPF为矩形,∴BE=EP=AF.又OA=OB.∠OAF=∠OBE=45º∴⊿OAF≌⊿OBE(SAS),∴OF=OE.∠FOA=∠EOP②∠FOE=∠FOA+∠AOE
自己画图,延长NE至G,使得MG=ME有直角三角形AEB,AM=BM,所以AM=mE=MG所以三角形AGE为直角三角形又因角AEG=CEN,同一个弦AD对应的角相等ACN=ABD又ABD+BAE=90
(1)相切.连结OE.因为∠EOC=2∠DAO=2∠ACB=∠ACB+∠DCE所以∠EOC+∠ECO=90°所以∠OEC=90°故CE为切线.(2)半径为四分之根号六.简答:AB=/2,DE=1,AE
是菱形.理由如下:因为AF//DB,又AD//BC,即AD//FB所以AFBD是平行四边形,则有:AF=DB又因为ABCD是矩形,所以:AC=DB即:AF=AC同样可以得到:BECD也是平行四边形,所
(1)相切.连结OE.因为∠EOC=2∠DAO=2∠ACB=∠ACB+∠DCE所以∠EOC+∠ECO=90°所以∠OEC=90°故CE为切线.(2)半径为四分之根号六.简答:AB=/2,DE=1,AE
:(1)相切.连结OE.因为∠EOC=2∠DAO=2∠ACB=∠ACB+∠DCE所以∠EOC+∠ECO=90°所以∠OEC=90°故CE为切线.
∵ABCD是平行四边形∴OA=OC,OB=OD又∵OE=OF∴四边形BEDF的对角线互相平分∴四边形BEDF是中心对称图形你题错了,应该是BEDF
在平行四边形ABCD中,AO=OC,BO=OF又因为BE=DF所以BO-BE=OF-DF即OE=OF在四边形AECF中,AO=OC,OE=OF所以四边形AECF是平行四边形
存在即是以O为圆心1/2对角线为半径(即OA)的圆