如图,点AB是圆o上的点,∠AOB=120°

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:30:25
如图,点AB是圆o上的点,∠AOB=120°
如图,AB是半圆O 的直径,点c是圆O上一点,连接ac,ab

的延长线上取一点E,连接EB,使∠OEB=∠ABC.(1)求证:BE是⊙O的切线(1)证明:∵AB是半圆O的直径,∴∠ACB=90°,∵ODAC,∴∠EDB=90°

如图 AB是圆o的直径,PA垂直于圆O 所在的平面,C是圆O 上不同于A,B的任一点.求证

证明:连结AC∵AB是圆O的直径∴∠ACB=90°即BC⊥AC又∵PA⊥圆O所在平面,且BC在这个平面内∴PA⊥BC因此BC垂直于平面PAC中两条相交直线∴BC⊥平面PAC

如图,P是圆O外一点,PA,PB分别与圆O相切于点A,B,点C是弧AB上一点,经过点C作圆O的切线,分别与PA,PB相交

 (1)在直角三角形AOD,COD中; 根据直角斜边(HL)证全等;      OC=OA, OD=OD;三角

如图,AB是圆O的直径,点C在圆O上,∠BOC=108°,过点C作直线CD分别交直线AB和圆O于点D、E,连接OE,DE

设∠CDB为X,∠CEO为YX+2(180-Y)=180Y=X+(180-Y)解这两个方程组得y=∠CEO=138°X=∠CDB=96°

如图,AB是圆O的一条弦,点C是AB上一点,OC⊥OA,且OC=BC,求∠A的度数

连接OB由OB=OAOC=BC得到∠BOC=∠B=∠A∠ACO=∠BOC+∠B=2∠AOC⊥OA∠ACO+∠A=3∠A=90∠A=30

如图,数轴上有A,O,B三点,点O是数轴的原点,点B表示的数是10,AB=18.

(1)∵点B表示的数是10,AB=18,∴A点表示-8;(2)①设经过t秒红蚂蚁与蓝蚂蚁在C点相遇,∵红蚂蚁的速度是每秒12个单位长度,蓝蚂蚁的速度是每秒10个长度单位,∴c+8=12tc=10t,解

如图,AB是圆O的直径,点D在AB的延长线上,BD=OB,点C在圆上,∠CAB=30°

连接OC∠CAB=30°OA=OC所以∠COD=60°又OB=BD所以OD=2OC所以OC垂直于CD所以DC是圆O的切线

①如图1,已知AB是圆O的直径,点C是圆O上一点,连接BC,AC,过点C作直线CD⊥AB于点D,点E是AB上一点,直线C

话说第一题.很简单.相似三角形概念.(1)点A和点F同在圆上,且都对应弦BC,所以角A=角F,CD垂直于AB,那么角DCB=角A,所以角DCB=角F,因此,三角形FCB相似于三角形CBG,所以BC/B

如图,已知AB是圆O的直径,点P在弧AB上(不含点A,B),把△AOP沿OP对着,点A的对应点C正好落在圆O上

1.结论OP∥BC是成立的∵△APO≌△CPO,∴∠APO=∠CPO∴∠APC=2∠APO∠APC和∠ABC都是弧AC对应的圆周角∴∠ABC=∠APC=2∠APO∵∠POB=∠PAO+∠APO=2∠A

如图 点o是直线ab上的一点,过点O作射线OC.

(1)已知∠AOC=60°,∴∠BOC=120°,又OM平分∠BOC,∠COM=12∠BOC=60°,∴∠CON=∠COM+90°=150°;(2)延长NO,∵∠BOC=120°∴∠AOC=60°,当

如图,AB是圆O的直径,点C在圆O上,∠BOC=108°,过点C作直线CD分别交直线AB和圆O于点D、E,连接OE,

(1)DE=AB/2=OE,则:∠EDO=∠EOD=(1/2)∠OEC;OE=OC,则:∠OCE=∠OEC=∠EDO+∠EOD=2∠CDB.∵∠BOC=∠OCE+∠CDB=3∠CDB.即108°=3∠

如图:AB是圆O的直径,C是圆O上一点,过点C的切线与AB延长线交于点D,CE//AB交圆O于点,求证:(1)∠DCB=

(1)连接OC,因为C是圆O上一点,CD是圆O的切线,所以∠DCO=90度,∠ACB=90度,所以∠DCB=∠DCO-∠OCB=∠90度-∠OCB,∠CAB=180度-∠ACB-∠CBA=∠90度-∠

如图,AB为圆O的直径,C是圆O上一点,点D在AB的延长线上,且角DCB=角A

(2009•路北区三模)如图:AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=∠A.(1)求证:CD是⊙O的切线;(2)如果:∠D=30°,BD=10,求:⊙O的半径.&

如图,点A、B、C是⊙O上的三点,AB∥OC.

(1)证明:∵AB∥OC,∴∠C=∠BAC.∵OA=OC,∴∠C=∠OAC.∴∠BAC=∠OAC.即AC平分∠OAB.(2)∵OE⊥AB,∴AE=BE=12AB=1.又∵∠AOE=30°,∠PEA=9

如图AB时圆o的直径,点c在圆o上,过点c的直线与AB的延长线交于点p,且角A等于角pcB.求pc是圆o的切线

简单说说吧标角比较麻烦,就用1234了1=23=41+4=2+3ACB=90所以OCP=90再问:还有一题您看看再答:先悬赏撒,辛辛苦苦不容易的再问:等等会的诺cA等于cp,pB等于一求Bc的弧长再答

如图,AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,且∠A=∠PCB.

(1)连接OC.    ∵AB是⊙O的直径,∴∠ACB=90°,即∠ACO+∠OCB=90°. ∵OA=OC,∴∠A=∠ACO,∵∠A=∠PCB,∴∠

如图,已知直线AB经过圆O的圆心,且与圆O相交于A,B两点,点C在圆O上且∠AOC=30°点P是直线AB上一个动点

符合条件的点P共有三个.(1)当点P在BA延长线上P1点时:若OQ=P1Q,则∠QOP1=∠QP1O,设∠COQ=X,则∠QP1O=X+30.∠OCQ=X+60=∠OQC. 则:2(X+60