如图,点B在直线AC上,BD垂直BE,角1加角C等于90度,CF与BD评行吗?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 00:15:53
如图,点B在直线AC上,BD垂直BE,角1加角C等于90度,CF与BD评行吗?
如图,已知点A、B、C、D在同一直线上,AM=CN ,BM==DN,角M=角N,求证:AC=BD

第一个问题,因为边角边,显然有三角形AMB全等于三角形CND,所以有AB=CD,同时加上BC,得AC=BD.第二个问题,9.938乘以10的9次方.

如图,点A,B,C,D在同一直线上,AC=BD,∠M=∠N,BM//DN.试说明AM//CN

已知BD=AC,且BC为共线,则CD=AB;又知DN//BM,∠N=∠M,而CD与AC在同一线,则∠D=∠B,又得出AB=CD,则∠A=∠C,所以AM//CN

如图,点E、A、B、F在同一条直线上,AD与BC交于点O,已知∠CAE=∠DBF,AC=BD.

证明:∵∠CAE=∠DBF(已知),∴∠CAB=∠DBA(等角的补角相等).在△ABC和△DBA中AC=BD(已知),∠CAB=∠DBA,AB=BA(公共边),∴△ABC≌△DBA(SAS).∴∠AB

如图,三角形ABC,三角形DCE都是等边三角形,BD交AC于点F,AE交DC于点G,且B,C,E在一条直线上,

∵△ABC和△DCE均是等边三角形,∴BC=AC,CD=CE,∠ACB=∠BCD=60°,∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,∴△BCD≌△ACE(SAS),∠CBD=∠CAE

如图,三角形ABC,三角形DCE都是等边三角形,BD交AC于点F,AE交DC于点G,且B,C,E在一条直线上

证明:①∵△ABC和△DCE都是等边三角形∴AC=BC,CE=CD∠ACB=∠DCE=60°则∠BCD=∠ACE=120°∴△BCD≌△ACE(SAS)∴AE=BD②∵△BCD≌△ACE∴∠BDC=∠

如图,已知点A、C、B、D在同一直线上,AM=CN,BM=DN,∠M=∠N,求证:AC=BD.

证明:∵AM=CN,∠M=∠N,BM=DN,∴△AMB≌△CND.∴AB=CD.∴AB-BC=CD-BC.即:AC=BD.

如图2,已知点A,B,C,D在同一直线上,AC=BD,AM∥CN,BM∥DN,求证AM=CN

∵AC=BD∴AC+BC=BC+BD即AB=CD∵AM∥CN,BM∥DN∴∠MAB=∠NCD,∠MBA=∠NDC∴△ABM≌△CDN(ASA)∴AM=CN再问:可以再详细些

如图,三角形ABC中,AB=AC,角BAC=90度,点D、E分别为直线AC上的两个动点,AD=CE,AM垂BD于M,交B

(1)60°(2)∠EDF=90°减α,证明:∵∠BAC=90°∴∠ADB=90°减∠ADB=90°减α∵∠EDF=∠ADB∴∠EDF=90°减α第(3)题我也不会做.

如图,已知点A.B.C.D在同一直线上,AM=CN,BM=DN,角M=角N,试说明AC=BD

∵在△AMB,△CND中AM=CN(已知)∠M=∠N(已知) BM=DN(已知)∴△MBA≌△CND(SAS)∴AB=CD(全等三角形对应边相等)∴AB-CB=CD-CB(等式性质)即AC=BD

如图,A、E、F、B四点在同一直线上,AC⊥CE,BD⊥DF,AE=BF,AC=BD,试说明AC∥BD

在RT△ACE和RT△BDF中,AE=BF,∠D=∠C=90º(HL)∴RT△ACE≌RT△BDF∵AC=BD∴∠EAC=∠FBD(同位角相等)∴AC∥BD

如图,已知点a,c,b,d,在同一直线上,am等于cn,角m等于角n,试证明ac等于bd

图呢?再问:我不会发图啊、、再答:没图怎么证明

如图,点A、E、F、B在一条直线上,AC⊥CE,BD⊥DF,AE=BF,AC=BD.CF与DE是否相等?请说明理由

由条件AE=BF,知道:AF=BE由AE=BF,AC=BD,AC⊥CE,BD⊥DF知道:RT⊿AEC≌RT⊿BFD所以∠EAC=∠FBD连接CF,DE则在三角形ACF与三角形BDE中,AC=BD,∠F

如图,点A,C,B,D在同一条直线上,AC=BD,AM=CN,BM=DN,求证:AM∥CN,BM∥DN.

证明:∵AC=BD,∴AC+BC=BD+BC,即AB=CD,∵在△ABM和△CDN中,AB=CDAM=CNBM=DN,∴△ABM≌△CDN(SSS),∴∠A=∠NCD,∠MBA=∠D,∴AM∥CN,B

如图,已知AB⊥BD,ED⊥BD,BC=DE,AB=CD,点B,C,D在一条直线上,求证:AC⊥CE

∵AB⊥BD,ED⊥BD,AB=CD,BC=DE∴△ABC≌△CDE∴角BAC=角DCE、角ACB=角CED∴角ACB+角DCE=90°∴角ACE=90°∴AC⊥CE

如图,A、E、F、B四点在同一直线上,AC⊥CE,BD⊥DF,AE=BF,AC=BD,试说明CF=DE

因为AE=BF,AC=BDACE=BDF=90°所以ACE和BDF全等所以角CAE=DBF因为AE=BF所以AE+FE=BF+FE即AF=BE在三角形CAF和DBE中根据SASCA=BDCAF=DBE

如图,AC∥BD,点P在直线CD上.

(1)∠APB=∠PAC+∠PBD,理由是:过P作PQ∥AC,∵AC∥BD,∴AC∥PQ∥BD,∴∠APQ=∠PAC,∠BPQ=∠PBD,∴∠APB=∠APQ+∠BPQ=∠PAC+∠PBD;(2)∠A

如图,△ABC与△DEC均为等边三角形,B.E.C在一条直线上,AE与BD交于点H,AC与BD交于点P,AE与CD交于点

因为正△ABC、正△DEC故:BC=AC,CD=CE,∠ACB=∠DCE=60°因为B.E.C在一条直线故:∠ACD=60°故:∠BCD=∠ACE=120°故:△BCD≌△ACE(SAS)故:∠QAC

如图,点B,C,E在同一直线上,三角形ABC三角形DCE都是等边三角形,AE交CD于点G,BD交AC于点F,连接FG

(2)证明:由(1)可得△ACE≌△BCD∴∠CBF=∠CAG∵∠BCF=∠ACG=60°,BC=AC∴△BCF≌△ACG∴CG=CF再问:问一下哦,你会不会这道题?题目:如图,正方形ABCD中,P是