如图,点E为正方形ABCD的BC上的一点,AE平分角DAE
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:23:04
正方形ABCD的面积为64∴边长=8以AC为轴做点D的对称点F易证 点F与点B重合所以 DP = BP所以 DP&
1.因为每个点速度相等所以BF=AE=DH因为正方形,所以AB=AD所以AD-AE=AD-DH所以BE=AH因为BE=AH,AE=BF,∠A=∠B所以△HAE和△EBF一定全等2.四边形EFGH=正方
这题是做对称点以AC为轴做点D的对称点F易证 点F与点B重合所以 DP = BP所以 DP + 
由题意可知:当动点P从A运动到B时,S△ABE=12×1×1=12,当动点P从B运动到C时,S△ACE=12×12×1=14,由于14<13<12,因此满足题意的点P的位置只有两种情况(2分)①当0<
∵正方形ABCD的面积为5∴BC=根号5正方形CEFG的面积是2∴CE=根号2△BDG的面积=(根号5-根号2)×根号5=5-根号10=5-3.162=1.838
BEFC=(A+B)/2*(A-B)BEF=(A-B)*B/2BFG=(A+B)/2*B-A*B/2
使P点是BE与AC的交点则可,这时PE+PD[(最小值)]=BE=AB=√(12)=2√(3),证明:连接BD,则AC是BD的垂直平分线,∴PD=PB,∴PD+PE=PB+PE=BE,在AC上任取异于
这题是做对称点以AC为轴做点D的对称点F易证 点F与点B重合所以 DP = BP所以 DP + 
1)在AB上,设s=kt+b由题意得:4=2k+b8=8k+b得:k=2/3b=8/3所以解析式就得出了.在BC上时设s1=k1t+b由题意得:0=10k+b,8=8k+b所以函数解析式求出来了.2)
对照你的图形阅读下列内容:设AE=x,则BE=(6-X)BF=XS(EFGH)=EF²=X²+(6-X)²=2X²-12X+36这是一个开口向上的抛物线,当X=
连接BE,AE,延长FE交CD于H,反向延长FE交AB于G,AE=BE=2,EG是AB的垂直平分线(三线合一).所以AG=BGAF垂直于AB,AG=BG=1,有勾股定理得EG=根号3,那么EH=2-根
此题可参考福建宁德市2010年数学中考试题的倒二大题.
由题意可知:当动点P从B运动到C时,S△APE=12×1×1=12,当动点P从C运动到E时,S△ACE=12×12×1=14,由于14<13<12,因此满足题意的点P的位置只有两种情况(2分)①当0<
不变分析:设旋转后是正方形则边长为1/2a*1/2a=1/4a^2若不为正方形则可以割补成为一个正方形(初四旋转会学,初三全等三角形也可以证明)
(1)1.在△BEP,△CQP中∠B=∠C,BE=CP=6,BP=CQ=4△BEP≌△CQP2.若要△BEP≌△CQP除1之外的情况,则只有BE=CQ=6,BP=CP=5才成立设Q的运动速度为x,则C
1.用正方形ABCD面积-除△APE外的3个小△PB=X-1PC=2-X则△ADE=0.5*1*0.5,△ECP=1/2-X/4,△=X/2-1/2△APE=Y=1-1/4-1/2+X/4-X/2+1
∵四边形ABCD是正方形,∴EA=EB=EC=ED,AC⊥BD,∠ABC=∠BCD=90°,∵FG∥AB,∴BG=GC=12BC=12a,AF=DF=12a,∠EGB=90°,在Rt△ABE中,由勾股
确认:题中所给半径是:a√2/2.①⊙B与AC相切.∵BE=½{√(a²+a²)}=a√2/2=半径, 且BE⊥AC(正方形对角线相互垂直平分).②⊙B与F
(1)证明:∵∠DEF=45°,∴∠DFE=90°-∠DEF=45°.∴∠DFE=∠DEF.∴DE=DF.又∵AD=DC,∴AE=FC.∵AB是圆B的半径,AD⊥AB,∴AD切圆B于点A.同理:CD切
证明:∵BF⊥DE,CD⊥BE∴∠CBG+∠E=∠CDE+∠E=90°∴∠CBG=∠CDE∵BC=CD,∠BCG=∠DCE=90°∴△BCG≌△DCE∴CG=CE