如图,点E为正方形ABCD的BC上的一点,AE平分角DAE

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:23:04
如图,点E为正方形ABCD的BC上的一点,AE平分角DAE
如图,已知正方形ABCD的面积为64,△ABE是等边三角形,且点E在正方形ABCD内.

正方形ABCD的面积为64∴边长=8以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP&

如图,正方形ABCD的边长为10厘米,点E沿ab边从点a向点b移动(不包括点a、b),点f沿bc边从点b向点c移动(不包

1.因为每个点速度相等所以BF=AE=DH因为正方形,所以AB=AD所以AD-AE=AD-DH所以BE=AH因为BE=AH,AE=BF,∠A=∠B所以△HAE和△EBF一定全等2.四边形EFGH=正方

如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,

这题是做对称点以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP + 

如图,已知正方形ABCD的边长是1,E为CD的中点,P为正方形边上的一个动点,动点P从A出发沿A⇒B⇒C⇒E运动,最终到

由题意可知:当动点P从A运动到B时,S△ABE=12×1×1=12,当动点P从B运动到C时,S△ACE=12×12×1=14,由于14<13<12,因此满足题意的点P的位置只有两种情况(2分)①当0<

如图,ABCD、CEFG是正方形,B、C、E在同一直线上,正方形ABCD的面积为5,正方形CEFG的面积是2

∵正方形ABCD的面积为5∴BC=根号5正方形CEFG的面积是2∴CE=根号2△BDG的面积=(根号5-根号2)×根号5=5-根号10=5-3.162=1.838

如图,正方形ABCD的面积为12,三角形ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE

使P点是BE与AC的交点则可,这时PE+PD[(最小值)]=BE=AB=√(12)=2√(3),证明:连接BD,则AC是BD的垂直平分线,∴PD=PB,∴PD+PE=PB+PE=BE,在AC上任取异于

如图,正方形ABCD的边长为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P

这题是做对称点以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP + 

如图①,已知正方形ABCD的边长为4cm.点E是AD的中点:动点P从点E处出发,以1cm|s的速度沿E→A→B→C运动,

1)在AB上,设s=kt+b由题意得:4=2k+b8=8k+b得:k=2/3b=8/3所以解析式就得出了.在BC上时设s1=k1t+b由题意得:0=10k+b,8=8k+b所以函数解析式求出来了.2)

如图,正方形ABCD的边长为6m,点E是AB边上的动点四边形EFGH是正方形,则正方形EFGH面积最小值为

对照你的图形阅读下列内容:设AE=x,则BE=(6-X)BF=XS(EFGH)=EF²=X²+(6-X)²=2X²-12X+36这是一个开口向上的抛物线,当X=

如图,已知正方形ABCD的边长为2,以顶点A,B为圆心,2为半径的两弧交于点E,以顶点C,D为圆心,2为半径的两弧交于点

连接BE,AE,延长FE交CD于H,反向延长FE交AB于G,AE=BE=2,EG是AB的垂直平分线(三线合一).所以AG=BGAF垂直于AB,AG=BG=1,有勾股定理得EG=根号3,那么EH=2-根

已知:如图,正方形ABCD的边长是1,E是CD的中点,P为边BC上一个动点,动点P从点B出发,沿B-C-E运动,

由题意可知:当动点P从B运动到C时,S△APE=12×1×1=12,当动点P从C运动到E时,S△ACE=12×12×1=14,由于14<13<12,因此满足题意的点P的位置只有两种情况(2分)①当0<

如图所示,正方形ABCD和正方形EFGH的边长分别为a和b,点E是正方形ABCD的中心,在正方形EFGH绕着点E旋转的过

不变分析:设旋转后是正方形则边长为1/2a*1/2a=1/4a^2若不为正方形则可以割补成为一个正方形(初四旋转会学,初三全等三角形也可以证明)

如图,已知正方形ABCD的边长为10cm,点E在AB边

(1)1.在△BEP,△CQP中∠B=∠C,BE=CP=6,BP=CQ=4△BEP≌△CQP2.若要△BEP≌△CQP除1之外的情况,则只有BE=CQ=6,BP=CP=5才成立设Q的运动速度为x,则C

如图,已知正方形ABCD的边长为1,E为CD边的中点,P为ABCD边上的一动点.动点P从A点出发,沿A---B---C-

1.用正方形ABCD面积-除△APE外的3个小△PB=X-1PC=2-X则△ADE=0.5*1*0.5,△ECP=1/2-X/4,△=X/2-1/2△APE=Y=1-1/4-1/2+X/4-X/2+1

如图,已知正方形ABCD的边长为a,AC与BD交于点E,过点E作FG∥AB,且分别交AD、BC于点F、G.问:以B为圆心

∵四边形ABCD是正方形,∴EA=EB=EC=ED,AC⊥BD,∠ABC=∠BCD=90°,∵FG∥AB,∴BG=GC=12BC=12a,AF=DF=12a,∠EGB=90°,在Rt△ABE中,由勾股

如图,已知正方形ABCD的边长为a,AC,BD交与点E,过点E做FG∥AB,分别交AD,BC于点F,G,问以点B为圆心,

确认:题中所给半径是:a√2/2.①⊙B与AC相切.∵BE=½{√(a²+a²)}=a√2/2=半径,        且BE⊥AC(正方形对角线相互垂直平分).②⊙B与F

如图1所示,在正方形ABCD中,AB=1,AC是以点B为圆心,AB长为半径的圆的一段弧,点E是边AD上的任意一点(点E与

(1)证明:∵∠DEF=45°,∴∠DFE=90°-∠DEF=45°.∴∠DFE=∠DEF.∴DE=DF.又∵AD=DC,∴AE=FC.∵AB是圆B的半径,AD⊥AB,∴AD切圆B于点A.同理:CD切

已知:如图,E为正方形ABCD的边BC延长线上的点,连接DE,过点B作BF⊥DE,垂足为点F,BF交CD于点G.

证明:∵BF⊥DE,CD⊥BE∴∠CBG+∠E=∠CDE+∠E=90°∴∠CBG=∠CDE∵BC=CD,∠BCG=∠DCE=90°∴△BCG≌△DCE∴CG=CE