如图,点o在Rt三角形ABC的斜边AB上,圆o切AC边于点E,切BC边于点D
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:25:04
圆半径2,OG为根号5再问:怎么算←再答:圆半径等于(AC+BC-AC)/2再问:OG呢再答:三角形OGF中OF=2,FG=1,所以OG为根号5
∵AC+GC=5(AC+GC)²=AC²+GC²+2AC*GC=25由弦切角定理可得角CEG=∠2∴△CGE∽△CEA∴CG:CE=CE:CA∴AC*CG=CE²
(1)BD为圆O的切线;(2)BD=5/2
证明:【1】第一步:∠ACD=90°→AD是圆O的直径→∠AED=90°第二步:AD是三角形的角平分线→∠DAE=∠DAC又∵AD=AD∴△ACD≌△AED(AAS)→AC=AE【2】由勾股定理可求得
△OMN是等腰直角三角形∵△ABC是等腰直角三角形,O是BC中点∴∠B=∠OAN=45°,AO=BO,AO⊥BC∵BM=AN∴△OBM≌△OAN∴OM=ON,∠BOM=∠AON∵∠BOM+∠AOM=9
答:ab/(a+b)解析:连接OF,可证△BOF∽△BCA,OF:AC=BF:AB,其中OF=半径r,BF=a-r,解得r=ab/(a+b)
连接OBOD垂直AB,BC垂直AC,OD=OC直角三角形ODB全等于直角三角形OCBDB=BC=6在直角三角形ADO中,AO=8-R(8-R)平方=R平方X(10-6)平方R=3
到三角形三边相等的点是三角形三个角分线的交点,角OAC+角OCA=1/2(角A+角C)=45度,所以角AOC=135度.
确认D、E是切点.半径r.①∵四边形CDOF为正方形{切线定义,四个角是直角},r=CD=CF;∵5=AB{勾三股四玄五}=AF+BD{切线长定理}=(4-r)+(3-r)=7-2r,∴r=1.②移动
等腰直角三角形,由题目得三角形abc为等腰直角三角形,当三角形aob刚与三角形abc有交点时三角形onm与三角形aoc重合,当再旋转是,角nom始终为90,度,而om=on,最后三角形omn与三角形a
BD与圆O相切证明:连结ODOA=OD∴∠A=∠ODA∵∠CBD=∠A∴∠ODA=∠CBD∵∠CDB+∠CBD=90°∴∠CDB+∠ODA=90°∴∠ODB=90°∵OD是圆O的半径∴DB与圆O相切2
证明:连结DM∵AD=BD,M为AB中点∴DM⊥AB∴∠DME+∠AME=90°∵ME⊥AC∴∠A+∠AME=90°∴∠DME=∠A又∵∠DEM=∠C=90°∴△MDE∽△ABC∴DE:BC=ME:A
过C作CD⊥AB,D为垂足∵MN⊥AB∴CD//MN∴∠DCN=∠N∵CN平分∠ACB∴∠ACM+∠MCN=∠ACN=∠BCN=∠DCN+∠BCD∵CM是斜边AB上的中线∴AM=BM=CM∴∠A=∠A
半径r,AO:AB=OE:BC(4+r):(4+2r)=r:6r=-3舍去或r=4元0面积=16π
令PF交BO于Q,连接OQ因为AB=BC,∠ABC=90°所以∠A=∠C=45°因为AB=BC,BO⊥AC所以BO是AC的中垂线且平分∠ABC因为∠ABC=90°所以∠OBF=45°因为PF垂直平分B
设⊙O与AB相切,切点为N,连接ON则ON⊥AB∴ON∥CM∴△AON∽△ACM∴AO/AC=NO/CM设OC=x,则AO=3-x∴(3-x)/3=2/(12/5)∴x=0.5∴当CO=0.5时,⊙O
8/3设AD为x,则AO为根号x平方加OB,故AC:AD等于BC:OD,代入数据.
连接OD、DE有AD⊥DEDE‖BC且有角OAD=ODA已知角OAD=CBD则有OAD=ODA=CBD=EDB而角ODE=OED且OAD+OED=90度因此有ODE+EDB=90度OD垂直BDBD为圆
求的应该是BN+MN的最小值吧 过点B作BO⊥AC于O,延长BO到B',使OB'=OB,连接MB',交AC于N,此时OB'=MN+NB'=MN+BN的
现在没时间了,我要上晚自习去了,0我先证第一问,如果你还没想出来,就告诉我,我回来再告诉你.