如图,点O是直线AB的一点,过点O任作一条射线OC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:09:30
如图,点O是直线AB的一点,过点O任作一条射线OC
如图AE是圆O直径D是圆O一点连接AD并延长使AD=DC,连接CE交圆O于点B,连接AB,过点E的直线与AC的延长线

证明(1):∵AD=DC,DE=DE,∠ADE=∠CDE=90度,∴△ADE≌△CDE(SAS),∴AE=CE.∴∠2=∠3,∴∠F=∠2=∠3.又∵∠2+∠3+∠4=90=∠1+∠2+∠F,∴∠1=

已知:如图,点O为直线AB上一点,过点O在直线AB的同侧作射线OD、OC、OE,且OD是∠AOC的平分线,∠DOE=90

OE是∠BOC的平分线.理由如下:∵OD是∠AOC的平分线,∴∠AOD=∠COD,又∠DOE=90°,∴∠COD+∠EOC=90°,∴∠AOD+∠EOB=90°,∴∠EOB=∠EOC,∴OE是∠BOC

已知 如图,AB是圆O一条弦,点C为弧AB中点,CD是圆O的直径,过C点的直线L交AB所在直线于点E,交圆O于点F.

∵点C为弧AB的中点,CD是圆O的直径\x0d∴CD垂直AB\x0d∴角CEB+角FCD=90度\x0d∵CD是圆O的直径\x0d∴角CFD=90度\x0d∵角FDC+角FCD=90度\x0d∴角CE

①如图1,已知AB是圆O的直径,点C是圆O上一点,连接BC,AC,过点C作直线CD⊥AB于点D,点E是AB上一点,直线C

话说第一题.很简单.相似三角形概念.(1)点A和点F同在圆上,且都对应弦BC,所以角A=角F,CD垂直于AB,那么角DCB=角A,所以角DCB=角F,因此,三角形FCB相似于三角形CBG,所以BC/B

如图 点o是直线ab上的一点,过点O作射线OC.

(1)已知∠AOC=60°,∴∠BOC=120°,又OM平分∠BOC,∠COM=12∠BOC=60°,∴∠CON=∠COM+90°=150°;(2)延长NO,∵∠BOC=120°∴∠AOC=60°,当

如图①,O为直线AB上一点,过点O向直线AB上方作射线OC,且∠AOC=30度,将一直角三角板的直角顶点放在点O处,一边

(1)∠BOC=150°,∠BOM=90°.由题意得t秒后∠BOM=75°,即直角尺转过15°,所以t=5s(2)因为直角尺转过15°,所以此时∠AOC=90°,所以ON平分∠AOC.(3)起先∠MO

如图AB是圆O的直径M是线段OA上一点,过M作AB的垂线交AC于点N,交BC的延长线与点E,直线CF交EN于点F

∵S△AEB=1/2EM*AB=1/2AC*BE  又∵AB=10,AC=ME=8 BE=10 ∴设OM=X,则MB=5+X∴在Rt△BME中(5+X)^2=10^2-8^2∴X=1∴OM=1∴AM=

直线与圆:如图,BD 是⊙O的直径,OA⊥OB,M是劣弧AB上一点,过点M点作⊙O的切线MP交OA的延长线于P点,MD与

1、连接MB,角PMN=角MBD又角BMD=角NOD=90所以角MBD=角PNM=角PMN所以PM=PN2、连接OM交BC于E因为∠OMP=90,BC‖MP所以OM垂直BC又角BOM=角MPO所以三角

如图,点O是直线AB上一点,OD,OE分别是∠AOC和∠BOC的平分线.

D跟E点在那里?我只看到M跟N点按你的意思应该M就是DN就是E吧∵OD、OE分别为∠AOC,∠BOC的平分线.∴∠DOC=1/2∠AOC;∠COE=1/2∠COB则∠DOC+∠COE=1/2∠AOC+

如图1,点O为直线AB上一点,过点O作射线OC,将一直角三角形的直角顶点放在点O处

1)由角的平分线的定义和等角的余角相等求解;(2)由∠BOC=120°可得∠AOC=60°,则∠RON=30°,即旋转60°或240°时ON平分∠AOC,(3)因为∠MON=90°,∠AOC=60°,

如图,AB是半圆O的直径,过半圆O上的一点D分别作AB的垂线与半圆O的切线,交直线AB于点E与点C,

帮你找到原题了,http://www.qiujieda.com/math/115438/真的一模一样以后遇到初中数理化难题都可以来这个网站搜搜寻找思路,题库超大,没有原题也有同类题,界面很科学哦,也可

如图,AB是⊙O的直径,C为圆周上的一点,过点C的直线MN满足∠MCA=∠CBA.

(1)证明:连接OC,∵AB是⊙O直径,C为圆周上的一点,∴∠ACB=90°,即∠ACO+∠OCB=90°,∵OC=OB,∴∠OCB=∠OBC,又∠MCA=∠CBA,∴∠MCA=∠OCB,∴∠ACO+

1.如图已知AB是圆O的直径,C是圆O一点,连接AC,过点C做CD垂直AB于点D,E是AB上的一点,直线CE于圆O

在AB取点E,使AE=AD,易证三角形ADC与三角形AEC全等,可得:角ADC=角AEC三角形CB详细在AB上取点E,使AE=AD,连接CE因为AC平分角BAD所以角EAC=角DAC因为AE=AD,A

如图,AB为⊙O的直径,C在⊙O上,并且OC⊥AB,P为⊙O上的一点,位于B、C之间,直线CP与AB相交于点Q,过点Q作

证明:如图,连接PB、BR,则∠APC=45°,∠APB=90°;故∠BPQ=180°-∠APC-∠APB=45°;又∵∠APB=90°=∠BQR,∴B、Q、R、P四点共圆;于是∠BRQ=∠BPQ=4