如图,点O是等边三角形ABC内的一点 角AOB=113° 角BOC=123°
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:08:29
(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴△BOC≌△ADC,∠OCD=60°,∴CO=CD.∴△COD是等边三角形;(2)若△AOD是等腰三角形,所以分三种情况:①∠AOD=
证:因ADC为BOC旋转而得,所以CO=CD,∠BCO=∠ACD;因ABC为等边三角形,所以∠ACB=60°,∠ACB=∠ACO+∠BCO=∠ACO+∠ACD,所以∠OCD=60°.因CO=CD,∠O
1因为旋转所以∠OCD=60°,OC=CD,所以三角形OCD是等边三角形2直角三角形因为三角形OCD等边三角形所以∠ODC=60°,因为∠BOC=150°,旋转所以∠ADC=150°,所以∠ADO=9
由旋转,得,△BOC≌△ADC所以∠BOC=∠ADC=a,又旋转了60°所以∠ADO=∠ADC-∠CDO=a-60°∠AOD=360°-110-a-60=190-a∠DAO=180-∠ADO-∠AOD
以B为原点将三角形BOC逆时针旋转60度,O新位置P,C新位置与A重合则:AP=OC=3,PB=4,∠BOC=∠APB且BPO为等边三角形∠BPO=60AP^2+BP^2=3^2+4^2=5^2=AO
解题思路:(1)根据已知利用SAS判定△APC≌△BDC,从而得到PC=DC,因为AP过圆心O,AB=AC,∠BAC=60°,所以∠BAP=∠PAC=12∠BAC=30°,又知∠CPD=∠PBC+∠B
S△ABC=6×8×1/2=24因为O是三角形角平分线的交点所以OD=OE=OF(用角平分线上的点到交的两边距离相等得出,此结论无需写证明过程,可直接用)设OD为x则S△ABC=(AB×OF×1/2)
旋转之后有两个隐藏已知:△ABO与△CBO1全等,∠OBO1=60°所以△BOO1为等边三角形,∠BO1O=∠BOO1=60°∠CO1O=∠BO1C-∠BO1O=∠AOB-∠BO1O=55°∠COO1
已知△ADC为△BOC按顺时针方向旋转60°所得,所以OC=DC,∟OCD=60°,由此可证:△COD是等边三角形
连接OA,设EF=x∵△ABC是⊙O的内接等边三角形∵EF∥BC∴∠AEF=∠AFE=60°∴△AEF为等边三角形∴AO⊥EF∴OF=AOtan60°=33=1∴EF=2OF=2.
ab用啥表示?.∠D是哪个
证明;∵⊿ABC是等边三角形∴AB=AC=BC,∠ABC=60º在PB的延长线上截取BD=PC,连接AD∵ABPC四点共圆∴∠ABD=∠ACP又∵BD=PC,AB=AC∴⊿ABD≌⊿ACP(
没看到图呢?请问你求什么?答案一:求证:OD+OE+OF=BC.延长FO交BC于G,得平行四边形DBGO和正三角形OGE,所以OD=GG,OE=GE因为FOEC是等腰梯形,所以OF=EC所以BC=BG
1.角ACD+角ACO=60度,角BCO+角ACO=60度所以ACD=BCO又因为BC=AC,OC=DC所以边角边三角形BOCADC全等所以角ADC=角BOC=角a2.角ADC=150度,角ODC=6
(1)将三角形BOC绕点C按顺时针方向旋转60度,可知:OC=OD,∠OCD=60°(从OC旋转到OD),所以三角形COD是等边三角形(2)三角形COD是等边三角形,所以∠ODC=60°,当∠ADC=
是,因为△ABC是等边三角形,所以∠B=∠C=60°,因为OE‖AB,OF‖AC,所以∠OEF=∠B=60°,∠OFE=∠C=60°,所以△OEF是等边三角形
提示:过A点作AF垂直BD、AG垂直BC求证:△ABF与△AGE相似得到:AB:AE=AF:AG在△AGC中AG=√3/2AC=√3/2AB在△AFD中AD=5AF=5/2√3答案:AB=√20
如图,点O是等边三角形ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连结OD1、求证:△COD是等边三角形证明:∠OCD=60OC=OD那么△COD
证明:∵等边△ABC,等边△DCE∴AC=BC,DC=EC,∠BAC=∠ABC=∠ACB=∠DCE=60∵∠ACE=∠DCE+∠ACD,∠BCD=∠ACB+∠ACD∴∠ACE=∠BCD∴△ACE≌△B