如图,点p是等腰直角三角形的底边bc延长线上的一点,过p作ba,ac的垂线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 17:22:16
如图,点p是等腰直角三角形的底边bc延长线上的一点,过p作ba,ac的垂线
如图,△ABC是等腰直角三角形,∠A=90°,动点P,Q分别从点A和点C同时出发,以相同的速度向点B和点A运动,到达终点

∵∠A=90°,AB+AC,∴∠B=∠C=45°,∵AP=CQ,∴AB-AP=AC-CQ,即BP=AQ,连接AD,∵D为BD中点,∴AD=BD=1/2BC,∠DAQ=45°,AD⊥BC,在ΔBCP与Δ

如图,点P是等腰直角三角形ABC底边上一点,过点P作BA,AC的垂线,垂足分别为E,F,设D为BC中点,

(1)角A=90°,A在上,B在左因为:△ABC是等腰直角三角形角A=90°,PE垂直AB,PF垂直AC所以:角PEA=角PFA=90°故:四边形AEPF是矩形AE=PF在△PCF中因为:角PFC=9

点P是等腰直角三角形ABC斜边BC的中点,以P为顶点的直角交AB,AC于EF,证明:PEF为等腰直角三角形

连接AP,因为△BAC为等腰直角三角形所以BP=AP,角PBE=角PAF=45度又因为角BPA=角EPF=90度所以角BPA-角EPA=角EPF-角EPA所以角BPE=角APF,加上BP=AP,角PB

已知点P是等腰直角三角形ABC内的一点,连接PA,PB,PC,如图,若P在斜边AC上,

已知ABC是等腰直角三角形,AC是斜边设AB=BC=a因为角A=角C=45度,cos45度=√2所以,PB^2=BC^2+PC^2-√2*a*PCPB^2=AB^2+PA^2-√2*a*PA于是2*P

如图,△ABC是等腰直角三角形,∠A=90°,点P,Q分别是AB,AC上的动点,且满足BP=AQ,D是BC的中点.(1)

1)证明:CQ=AC-AQ,AP=AB-BP,∵AC=AB,∴CQ=AP,△CDQ和△ADP中,CQ=AP、∠C=∠DAP=45°、CD=AD,△CDQ≌△ADP,∠CQD=∠APD,四边形APDQ内

如图,△ABC是等腰直角三角形,∠A=90°,点P,Q分别是AB,AC上的动点,且满足BP=AQ,D是BC的中点.

解(1)证:∵D是BC的中点.△ABC是等腰直角三角形∴∠PBD=∠QADAD=BD又BP=AQ∴△PDB≌△QAD(SAS)∴∠PDB=∠ADQQD=PD又∠ADB=90°∴∠PDQ=90°∴△PD

如图,点P是等腰直角三角形ABC底边BC上一点,过点P作BA、AC的垂线,垂足是E、F,点D为BC的中点.

(1)证明:如图1,连接AD,∵等腰直角三角形ABC,点D为BC的中点.∴∠BAC=90°,∠BAD=∠ACB=45°,AD⊥BC,AD=BD=CD=12BC,∵PE⊥AB,PF⊥AC,∠BAC=90

如图,△ABC是等腰直角三角形,∠A=90°,点P、Q分别是AB、AC上的一动点,且满足BP=AQ,D是BC的中点.

(1)证明:连接AD∵△ABC是等腰直角三角形,D是BC的中点∴AD⊥BC,AD=BD=DC,∠DAQ=∠B,在△BPD和△AQD中,BD=AD∠DBP=∠DAQBP=AQ,∴△BPD≌△AQD(SA

如图,△ABC是等腰直角三角形,∠A=90°,点P、Q分别是AB、AC上的一动点,且满足BP=AQ,D是BC的中点

(1)证明:连接AD∵△ABC是等腰直角三角形,D是BC的中点∴AD⊥BC,AD=BD=DC,∠DAQ=∠B,又∵BP=AQ,∴△BPD≌△AQD(SAS),∴PD=QD,∠ADQ=∠BDP,∵∠BD

如图 点A的坐标是(3,0)点B(0,-3)以AB为底等腰直角三角形ABC 求C坐标 以AB为腰等腰直角三角形ABC 点

1、以AB为底(出现正方形),C1(0,0)C2(3,-3),2、以∠A为顶角,C3(0,3),C4(6,-3),3、以∠B为顶角.C5(-3,0),C6(3,-6),共六点.

如图,在等腰直角三角形ABC中,∠ACB=90,P是斜边AB上的一个动点(P不与A,B)

过C作AB垂线,垂足为M因为三角形ACB为等腰直角三角形所以AM=BM=CM=1/2AB因为DE⊥AB所以角DEP=角CMP角EDB=角B=45因为CP=PD所以角PCD=角PDC所以角CPB=45+

如图,三角形ABC是等腰直角三角形

50平方厘米,利用旋转

如图abc是等腰直角三角形

证明:连接AD∵△ABC是等腰直角三角形,D是BC的中点∴AD⊥BC,AD=BD=DC,∠DAQ=∠B,∴AD=BD(与下面两式用大括号括起来)∠DAQ=∠DBPBP=AQ,∴△BPD≌△AQD(SA

如图,三角形ABC是等腰直角三角形,角BAC=90度,点P、Q分别是AB、AC上的动点,且满足BP=AQ,D是BC的中点

证明:∵AB=AC,∠BAC=90°,点D是BC的中点,∴AD⊥BC,∠ADB=∠ADC=90°,∠BAD=∠CAD=45°,AD=BD=AD∴⊿AQD≌⊿BPD∠BDP=∠ADQ∵∠BDP+∠PDA

如图,在等腰直角三角形ABC中,O是斜边AC的中点,P是斜边AC的一个动点,D是BC上的一点,且PB=PD,DE⊥AC,

楼主:我就不证明了我就分析下你根据分析一定能得到解答的这是个要证明三角形全等的题在三角形BOP和三角形PDE中我们可以发现PB=PD角AOB=角PDE楼主没弄懂的大概就是证明角PBO=角DPC(只要这

如图,在等腰直角三角形ABC中,P是斜边BC的中点,以P为顶点的直角两边分别与AB、AC交于点EF,连接EF.当角EPF

简要证明如下:如图,连接AP由已知得AP=CP,∠1=∠C∵∠3=90°-∠4,∠2=90°-∠4∴∠2=∠3∴△AEP≌△CFP(角边角)∴PE=PF∴三角形PEF始终是等腰直角三角形

构造一元二次方程解决较复杂的几何问题,如图,等腰直角三角形ABC的直角边AB=2,点P从A点出发……

S△ABC=1/2×2×2=2.①令1/2(2x-x2)=2,即x2-2x+4=0,此方程无解;②令1/2(x2-2x)=2,即x2-2x-4=0,解得x=1±根号5故当AP的长为1+根号5时,S△P

如图,三角形ABC是等腰直角三角形,角A=90°,点P,Q分别是AB,AC上的动点,且满足BP=AQ,点D是BC的中点

1,连接ADBP=AQ ∠QAD=∠B=45 AD=BD △BPD≌△AQD  PD=QD∠PDB=∠QDA  ∠QDP=∠AQD