如图,点p是等腰直角三角形的底边bc延长线上的一点,过p作ba,ac的垂线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 17:22:16
∵∠A=90°,AB+AC,∴∠B=∠C=45°,∵AP=CQ,∴AB-AP=AC-CQ,即BP=AQ,连接AD,∵D为BD中点,∴AD=BD=1/2BC,∠DAQ=45°,AD⊥BC,在ΔBCP与Δ
(1)角A=90°,A在上,B在左因为:△ABC是等腰直角三角形角A=90°,PE垂直AB,PF垂直AC所以:角PEA=角PFA=90°故:四边形AEPF是矩形AE=PF在△PCF中因为:角PFC=9
连接AP,因为△BAC为等腰直角三角形所以BP=AP,角PBE=角PAF=45度又因为角BPA=角EPF=90度所以角BPA-角EPA=角EPF-角EPA所以角BPE=角APF,加上BP=AP,角PB
已知ABC是等腰直角三角形,AC是斜边设AB=BC=a因为角A=角C=45度,cos45度=√2所以,PB^2=BC^2+PC^2-√2*a*PCPB^2=AB^2+PA^2-√2*a*PA于是2*P
1)证明:CQ=AC-AQ,AP=AB-BP,∵AC=AB,∴CQ=AP,△CDQ和△ADP中,CQ=AP、∠C=∠DAP=45°、CD=AD,△CDQ≌△ADP,∠CQD=∠APD,四边形APDQ内
解(1)证:∵D是BC的中点.△ABC是等腰直角三角形∴∠PBD=∠QADAD=BD又BP=AQ∴△PDB≌△QAD(SAS)∴∠PDB=∠ADQQD=PD又∠ADB=90°∴∠PDQ=90°∴△PD
(1)证明:如图1,连接AD,∵等腰直角三角形ABC,点D为BC的中点.∴∠BAC=90°,∠BAD=∠ACB=45°,AD⊥BC,AD=BD=CD=12BC,∵PE⊥AB,PF⊥AC,∠BAC=90
(1)证明:连接AD∵△ABC是等腰直角三角形,D是BC的中点∴AD⊥BC,AD=BD=DC,∠DAQ=∠B,在△BPD和△AQD中,BD=AD∠DBP=∠DAQBP=AQ,∴△BPD≌△AQD(SA
(1)证明:连接AD∵△ABC是等腰直角三角形,D是BC的中点∴AD⊥BC,AD=BD=DC,∠DAQ=∠B,又∵BP=AQ,∴△BPD≌△AQD(SAS),∴PD=QD,∠ADQ=∠BDP,∵∠BD
1、以AB为底(出现正方形),C1(0,0)C2(3,-3),2、以∠A为顶角,C3(0,3),C4(6,-3),3、以∠B为顶角.C5(-3,0),C6(3,-6),共六点.
连接AP∵∠BAC=90°,AP为中线 &nb
过C作AB垂线,垂足为M因为三角形ACB为等腰直角三角形所以AM=BM=CM=1/2AB因为DE⊥AB所以角DEP=角CMP角EDB=角B=45因为CP=PD所以角PCD=角PDC所以角CPB=45+
50平方厘米,利用旋转
证明:连接AD∵△ABC是等腰直角三角形,D是BC的中点∴AD⊥BC,AD=BD=DC,∠DAQ=∠B,∴AD=BD(与下面两式用大括号括起来)∠DAQ=∠DBPBP=AQ,∴△BPD≌△AQD(SA
证明:∵AB=AC,∠BAC=90°,点D是BC的中点,∴AD⊥BC,∠ADB=∠ADC=90°,∠BAD=∠CAD=45°,AD=BD=AD∴⊿AQD≌⊿BPD∠BDP=∠ADQ∵∠BDP+∠PDA
楼主:我就不证明了我就分析下你根据分析一定能得到解答的这是个要证明三角形全等的题在三角形BOP和三角形PDE中我们可以发现PB=PD角AOB=角PDE楼主没弄懂的大概就是证明角PBO=角DPC(只要这
简要证明如下:如图,连接AP由已知得AP=CP,∠1=∠C∵∠3=90°-∠4,∠2=90°-∠4∴∠2=∠3∴△AEP≌△CFP(角边角)∴PE=PF∴三角形PEF始终是等腰直角三角形
S△ABC=1/2×2×2=2.①令1/2(2x-x2)=2,即x2-2x+4=0,此方程无解;②令1/2(x2-2x)=2,即x2-2x-4=0,解得x=1±根号5故当AP的长为1+根号5时,S△P
1,连接ADBP=AQ ∠QAD=∠B=45 AD=BD △BPD≌△AQD PD=QD∠PDB=∠QDA ∠QDP=∠AQD