如图,点p是边长为1的正方形abcd对角线ac上的一个动点 点e在边bc上
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 21:27:52
存在.讲因为△BEF中的EF那条边也是□PDEF的其中一条边,那P点向G点移动,当P点完全与G点重合的时候,FE那条边已经变成了一条平行线,FE变成了平行线,那△BEF就会变成一个梯形(BEFG).当
过N点做NG⊥BA∵四边形ABCD是正方形∴AD=AB=12设AM的长为X,则BM为12-X∵四边形PMND'是四边形AMND的折叠图形∴AM=PM=X在Rt△BPM中有PB^2+BM^2=PM^22
(1)答:2,2−1.(2)①证明:在正方形ABCD中,AB=BC,∠A=∠BCD=90°.∵Q点为A点关于BP的对称点,∴AB=QB,∠A=∠PQB=90°,∴QB=BC,∠BQE=∠BCE,∴∠B
再问:对称中心是什么?再答:
由题意可知:当动点P从A运动到B时,S△ABE=12×1×1=12,当动点P从B运动到C时,S△ACE=12×12×1=14,由于14<13<12,因此满足题意的点P的位置只有两种情况(2分)①当0<
⑴PB+PC最小=DE=√(AE^2+AD^2)=√5⑵PA+PC最小=AC‘=2√3.⑶作P关于OB的对称点P‘,关于OA的对称点P’‘,连接P’P‘’交OA、OB于Q、R,根据对称性得:OP‘=O
正方形对角线与边夹角45°,等腰三角形PEB的高为1-x/根号2,底边长为2乘以根号2乘以X面积为相乘除2.X大于0小于根号2X=根号2/2时最大
第一个问题:∵ABCD是正方形,又EF⊥AD、GH⊥AB,∴容易证得:ABFE、ADHG都是矩形,∴BF=AE、DH=AG,又AG=AE,∴BF=DH.∵ABCD是正方形,∴AB=AD、∠ABF=∠A
x+y=大正方形边长因为pqrs是正方形,四个三角形全等由此推出答案.
1)在AB上,设s=kt+b由题意得:4=2k+b8=8k+b得:k=2/3b=8/3所以解析式就得出了.在BC上时设s1=k1t+b由题意得:0=10k+b,8=8k+b所以函数解析式求出来了.2)
证明:(1)①过点P作GF∥AB,分别交AD、BC于G、F.如图所示.∵四边形ABCD是正方形,∴四边形ABFG和四边形GFCD都是矩形,△AGP和△PFC都是等腰直角三角形.∴GD=FC=FP,GP
(1)A点与Q点沿BP对称,AB=BC=BE,∠BQC=∠QCB,∠BCQ和∠QCE互余,∠BQC和∠CQE互余,∠EQC=∠QCE;EC=EQ.同理EQ=ED,所以E是DC的中点.在▷P
1.用正方形ABCD面积-除△APE外的3个小△PB=X-1PC=2-X则△ADE=0.5*1*0.5,△ECP=1/2-X/4,△=X/2-1/2△APE=Y=1-1/4-1/2+X/4-X/2+1
(1)当CF=4时,由切线的判定定理可知,AD,BC均是半圆的切线,故FB=FM,AE=EM.设AE=EM=X,过E作BC边上的高,由勾股定理可列:(X-2)^2+6^2=(2+X)^2解得:X=4,
1)已知DQ=x,AP=x,设矩形ABCD的面积为S1,三角形APQ的面积为S2,则有S1=10*10=100S2=1/2*AP*AQ+=1/2*(10-x)x,所以S=S1-S2=100-5X+1/
证明:(2)解法一:△ADQ的面积恰好是正方形ABCD面积的16时,过点Q作QE⊥AD于E,QF⊥AB于F,则QE=QF,12AD×QE=16S正方形ABCD=16×16=83,∴QE=43,由△DE
(1)在△CPD和△BCP中,PC=PC,BC=CD,∠BCP=∠PCD,所以△CPD全等于△BCP(SAS),所以PD=BP,又因为PE=PB,所以PE=PD.所以∠PDC=∠PBC,又因为PE=P
因为PB=PE,所以∠PBE=∠PEB因为正方形ABCD,所以∠PCD=∠PCB,PC=PC,BC=CD,所以可证得△PCB全等于△PCD所以得∠PDC=∠PBE所以得∠PDC=∠PEB因为∠PEB+
1 ) 过D点作关于OB的对称点D′,连接D′A交OB于点P,由两点之间线段最短可知D′A即为PA+PD的最小值,∵D(2,0),四边形OABC是正方形,∴D′点的坐标为(0,2)