如图,直线AB与圆O相切与点A
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 11:24:27
(1)在直角三角形AOD,COD中; 根据直角斜边(HL)证全等; OC=OA, OD=OD;三角
连接BC∵OA=OC∴∠BAC=∠ACO∵AC平分∠DAB∴∠DAC=∠BAC∴∠DAC=∠ACO∴AD∥OC∵CD切圆O于C∴OC⊥CD∴AD⊥CD∴∠ADC=90∵直径AB∴∠ACB=90∴△AC
解:设圆的关径为x,则AP=5-x.∵AB=AC.∴AB²=AC²,即OA²-OB²=PC²-AP²,5²-x²=(2√
(1)由y=1/2x+2得:斜率=1\2∴AP=1\2BC∴AP=PC=AC∴∠ACB=∠APC=60°∠ABC=30°又∵直线AB与圆相切于点A且AO⊥PCAP=PC=AC∴∠PAB=∠PAO=30
连接OC,∵直线l与⊙O相切于点C,∴OC⊥CD;又∵AD⊥CD,∴AD∥OC,∴∠DAC=∠ACO;又∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB.
(1)连接OC∵OC=OA∴∠CAO=∠OCA又∵CD与圆O相切∴∠OCD=90°即∠OCA+∠DCA=90°∴∠CAO+∠DCA=90°又∵AC平分∠DAB∴∠DAC=∠CAO∴∠DAC+∠DCA=
1,连接AC,AD,AB,CO因为AB是直径,CO是半径,所以AO=BO=CO,故CO将角AOB平分,易得角AOC=角COB=90度,角CAO=45度,因为AC平分角DAB,所以角DAC=角CAO=4
(1)连结OC作OD⊥PBD为垂足∵圆O与PA相切于点C∴OC⊥PA又OD⊥PB点O在角APB的平分线上∴OD=OC即圆心O到直线BP的距离等于圆的半径∴直线PB于圆O相切2设PO交圆于F∵圆O与PA
连接OC,过O作ON⊥PB于N∵⊙O与PA相切于点C∴OC⊥PA又∵ON⊥PB且O在∠APB的平分线上∴OC=ON∴直线PB与⊙O相切
(1)证明;过点O作OD垂直PB于D所以角ODP=90度因为圆O与PA相切于C所以角OCP=90度所以角OCP=角ODP=90度因为点O在角APB的平分线上所以叫OPC=角OPD因为OP=OP所以三角
(1)证明:∵PC是⊙O的直径,CD是⊙O的切线,∴∠PAC=∠OCD=90°,∵DA,DC是⊙O的切线,∴∠ADO=∠CDO,AD=DC,∴DO⊥AC,∴PA∥OD,∴∠P=∠DOC,∴△APC∽△
由摄影定理OA²=OC*OP2²=4OCOC=1∴AC=√3AB=2AC=2√3
(1)证明:连接OC,作OD⊥PB于D点.∵⊙O与PA相切于点C,∴OC⊥PA.∵点O在∠APB的平分线上,OC⊥PA,OD⊥PB,∴OD=OC.∴直线PB与⊙O相切;设PO交⊙O于F,连接CF.∵O
∵AB为直径∴AC⊥BCAE为切线,AE⊥AB∴△ABC∽△EBA在RT△ACB中BC=√100-36=8BC/AB=AB/BEBE=5/4∵△ABC∽△EBA∴∠B=∠CAE
∵∠COE=3∠EOD,又∠COE+∠EOD=180°∴∠EOD=180°÷(3+1)=45°∵∠AOE=90°∴∠BOE=180°-90°=90°∴∠BOD=∠BOE-∠EOD=90°-45°=45
连OB,∠A=角∠ABO,角ACO=角ECB=角EBC角A+角ACO=90°,角ABO+角EBC=角OBE=90直线BE与圆O相切
第一步,过c做AB的垂线,求得ABC的面积第二步,利用切线长定理,得AE=AM,BE=BN,CM=CN,设圆半径为R,连圆心到各边及各顶点连线,第三步,利用面积,三个小三角形的面积和=ABC的面积,求
1.证明:连结OC因为CE=CB,半径OE=OB,OC是公共边所以△OEC≌△OBC(SSS)则∠OEC=∠OBC又DE与圆O相切于点E,即∠OEC=90°则∠OBC=90°所以BC是圆O的切线,且以
PB与圆O相切,理由如下:连结OA∵PA切圆O于A,∴∠OAP=90°∵AC∥OP,∴∠C=∠POB,∠CAO=∠AOP,∵OA=OC,∴∠C=∠CAO,∴∠AOP=∠BOP,又∵OP=OP,OA=O