如图,直线l1:y=-根号3X 根号3与x轴.y轴分别交于点A.B,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:04:52
如图,直线l1:y=-根号3X 根号3与x轴.y轴分别交于点A.B,
如图,直线l1:y=-根号3X+根号3与x轴、y轴分别交于点A、B,三角形AOB和三角形ACB关于直线l对称,求过点B、

设C(p,q),p>0,q>0:y=-根号3X+根号3,0=-根号3X+根号3,X=1;A(1,0);AO=1;y=-根号3*0+根号3,y=根号3;B(0,根号3),BO=根号3AB²=B

如图,直线l1:y=-根号3X+根号3与x轴、y轴分别交于点A、B,△AOB与△ACB关于直线l对

解;由题意O与C关于AB对称设C(x,y),OC中点是(x/2,y/2)因为OC中点(x/2,y/2)在AB上所以y/2=-根号3(X/2)+根号3因为OC与AB垂直所以(-根号3)(y/x)=-1解

直线l1:x+根号2y+1=0,若直线l1⊥l2,则l2的倾斜角为

x+√2y+1=0L1的斜率为-√2/2L1⊥L2∴L2的斜率为√2∴L2的倾斜角为arctan(√2)

初二代数竞赛题如图,直线L1的解析式为y=-3x+3,且L1与x轴交于点D,直线L2经过点A、B,直线L1,L2交于点C

1:Y=AX+B,将A,B代入0=4a+b-3/2=3a+b解得a=3/2,b=-6L2表达式为:y=(3/2)*X-62:Y=-3X+3;Y=(3/2)X-6两直线交点C为:(2,-3)D为(1,0

如图,直线l1:y=x+1与直线l2:y=-x+3相交于点P,直线l1、l2与y轴的交点分别为点A、B.

P坐标(1,2)A(0,1)B(0,3)△ABP为等腰直角三角形你在坐标上画出这三个点就知道三角形形状了,一目了然.

如图,直线L1:y=根号3x-2交x轴于点A,直线L2:y=-根号3/3x+n垂直于L1,垂足为B,交X轴于点C

(1)L1斜率为根3,角BAC=60度角OAB=角OBC=120度角OBA=120度-90度=30度角BOA=30度OB为:y=[(根3)/3]*xOB与L1方程联立,得B点坐标(根3,1)代入L2,

如图,已知直线L1:4x+y=0,直线L2:x+y-1=0以及L2上一点P(3,-2).求圆心在L1上且与直线L2相切于

洛逸夏,你好:所求圆与直线L2相切于点P(3,-2),则圆心在过点P且垂直于L2的直线m上直线m的方程为y+2=x-3,即x-y-5=0.将直线m与直线L1的方程联立,解得圆心坐标为C(1,-4)半径

如图,直线l1的表达式为y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C 如图,直线l

设该函数为Y=KX+B依题意得,0=4K+B,-3/2=3K+B解得K=3/2,B=-6即,Y=3/2X-6

如图,直线l1的表达式为y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C

(1)直线l1:y=-3x+3与x轴交于点D,当y=0时,-3x+3=0,解得,x=1所以点D的坐标是(1,0)(2)由图可知直线l2过点A(4,0)、B(3,-32),设其解析式为y=kx+b,把A

如图,直线l1的解析表达式为y=-3x+3,且l1与x轴交于点D,直线l2经过点A、B,直线l1、l2交于点C.

(1)且l1与x轴交于点D∴令y=0解得x=1故点D(1,0)(2)点B没有纵坐标呢如果我们说的是同一题,那么点B(3,-2/3)设l2的解析式为y=kx+b则4k+b=03k+b=-2/3解得k=2

如图,直线l1的表达式为y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.①求直线l2

①已知A和B的坐标B坐标就是(3,-3/2)就可以得出l2的斜率k已知斜率和直线上任意一点坐标就可以求出l2解析式了③在1中求出l2的情况下通过l1和l2的解析式算出交点C的坐标再用l1算出D的坐标.

如图,已知直线l1的解析式为y=3x+6,直线l1与x轴、y轴分别相交于A、B两点,直线l2经过B、C两点,点C的坐标是

问题(1):设B(0,b)因为点B在l2直线上,l2解析式为y=3x+6所以b=0+6b=6所以B(0,6)又C(8,0)所以l2解析式:y=-3x/4+6(2)做QM⊥BO,QN⊥CO设点Q(q,q

已知直线l1和l2关于直线y=x对称,若直线l1的斜率为根号3,则直线l2的斜率为

直线l1和l2关于直线y=x对称,L1,L2与y=x的夹角相等直线l1的斜率为根号3,L1的倾斜角=60,与y=x的夹角60-45=15度L2与y=x的夹角=15度,L2的倾斜角=45-15=30度,

如图,直线L1的解析式为y=-3x+3,且L1交x轴于点D,直线L2经过点A、B.直线L1和L2相交于C (1)求点D的

(1)点D是直线l1与x轴的交点,此时y=0.(2)直线l2经过A、B两点,可以通过待定系数法求l2的解析式.(3)求出点D的坐标后,可求AD的长,只要再求出点C到x轴的距离就可以求面积了,点C到x轴

如图,直线l1的解析表达式为:y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.

1)直线l1:y=-3x+3与x轴交于点D,当y=0时,-3x+3=0,解得,x=1所以点D的坐标是(1,0)(2)由图可知直线l2过点A(4,0)、B(3,-32),设其解析式为y=kx+b,把A、

若直线l1与直线l2:2x-3y+4=0垂直,且直线l1过点(0,根号3),求直线l1的点方向式方程.

设直线L1的解析式为3X+2y+c=0∵直线L1过点(0,√3)∴代入得c=-2√3则L1的解析式为3x+2y-2√3=0故直线L1的点斜式为y=-3/2x+√3

如图,已知直线l1:4x+y=0,直线l2:x+y-1=0以及l2上一点P(3,-2).

(Ⅰ)设圆心为M(a,b),半径为r,依题意,b=-4a.(2分)设直线l2的斜率k2=-1,过P,C两点的直线斜率kPC,因PC⊥l2,故kPC×k2=-1,∴kPC=−2−(−4a)3−a=1,(

如图,已知直线l1:4x+y=0,直线l2:x+y-1=0以及l2上一点P(3,-2).求有圆心在l1上且与直线l2相切

∵圆心在l1上,直线l1:4x+y=0,∴设圆心坐标为(m,-4m)又∵圆与直线l2相切于点P,直线l2:x+y-1=0以及点P(3,-2).∴|m−4m−1|2=(m−3)2+(−4m+2)2即m2

如图,已知直线L1:Y=2X+3,直线L2:Y=负X+5,直线L1,L2分别交X轴于B,C两点,L1,L2相交于点A.

(1)由题意得,令直线l1、直线l2中的y为0得:x1=-32,x2=5,由函数图象可知,点B的坐标为(-32,0),点C的坐标为(5,0),∵l1、l2相交于点A,∴解y=2x+3及y=-x+5得: