如图,直线y=2x 6与x轴交于点A,与y轴交于点B,直线y=-1 2x 1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:19:46
A(-1,0)B(3,0)所以P点纵坐标为3或-3所以点P坐标为(1/2,3)或(-5/2,-3)所以解析式为Y=6X或Y=6/5X
分析:由题意一次函数与x轴相交于点A可求A(2,0)因为:AC⊥x轴,所以C点的横坐标为2.因为P点也在一次函数上,我们可以设P(m,-1/2m+1)过点P作PD⊥AC于D,则D(2,-1/2m+1)
由图:B(n,0)A(-m/2,0)所以n+m/2=4.①设y=2x+m与y轴交于E(0,m)设点C(a,b)则b=2a+mb=-a+n所以a=(n-m)/3b=2(n-m)/3+m所以C((n-m)
(1)将直线y=-2x+12与直线y=x联立解得点C的坐标为C(4,4)(2)将直线y=-2x+12与直线y=0(即x轴)联立解得点A的坐标为A(6,0)故三角形AOC的面积为6*4÷2=12(3)由
设A(x,y)由S△ABO=3/2得xy的绝对值为3而A在y=k/x上,k
(1)令y=0,得x=-32,∴A点坐标为(-32,0),令x=0,得y=3,∴B点坐标为(0,3);(2)设P点坐标为(x,0),∵OP=2OA,A(-32,0),∴x=±3,∴P点坐标分别为P1(
由y=2x+6与X轴交于点A,与Y轴交于点B,可知 A(-3,0)、B(0,6) 根据绕原点O顺时针旋转90°,可知 直线L的解析式是y=-1/2(x-3)即y=-1/2x+3/2
因为在三角形PFG中,两边之差小于第三边,所以lPG-GFl小于等于PF当lPG-GOl取得最大值时,P、F、G不能构成三角形,所以P、F、G共线,即点G在PF的延长线上.
(1).y=-x²+2x+3=-(x²-2x)+3=-[(x-1)²-1]+3=-(x-1)²+4对称轴:x=1;顶点P(1,4);C(0,3);A(-1,0)
(1)二者的底相同(DE),只需其上的高相等即可,即CP与DE平行。CP的斜率也是2,C(0,-4),CP的方程为y=2x-4(点斜式)y=2x-4=x²+3x-4x=-1(另一解x=0为点
(3)抛物线y=1/2x²-3/2x+1对称轴是x=3/2,设M(3/2,Y),∵B、C关于x=3/2对称,∴MC=MB,∴要使|AM-MC|最大,便是使|AM-MB|最大,由三角形两边之差
(1)y=1/2x+1与y轴交于点A,可以得到A点坐标为(0,1),又知B点坐标为(1,0),代入y=1/2x²+bx+c,解得b=-3/2,c=1,该抛物线的解析式为y=1/2x²
(1)过C做X轴的平行线,交X于点D,三角形AOC面积等于OA*CD=2CD/2=3.得CD=3.又因为C为第三相限点,所以C的纵坐标为-3.将Y=-3带入L1方程得X=-1.再将X=-1,Y=-3带
∵直线L1:y=x-2交x轴于点A,交y轴于点B∴A(2,0)B(0,﹣2)设C(X,Y)∴S△AOC=1/2×|OA|×|Y|=1/2×2×|Y|=3∴Y=±3∵与直线l2:y=kx-4交于点c∴C
因为双曲线y=k/x与直线y=kx+b有一个交点(1,2)所以2=k/1,2=k+bk=2,b=2-k双曲线y=2/x与直线y=2x+b只有一个交点2x^2+bx-2=0有两个相等的实根b^2+16=
直线y=-根号3x+4与直线y=-根号3x是平行线,不可能相交,请改正!
1,联立y=x/2,y=-x+6.解得x=4,y=2故A(4,2)由y=-x+6,y=0时,x=6故B(6,0)S△AOB=1/2*6*2=62,∵S△AOD∶S△ADB=1∶2,△AOD与△ADB同
(1)点P(m,6)在直线L2:y=-2x的图象上,则:6=-2m, m=-3,即点P为(-3,6),点P又在直线L1:y=-x+b的图象上,故:6=-(-3)+b,b=3.即直线L1为:&
(1)A点位y=x-2与x轴的焦点,所以A(x,0),代入0=x-2,x=2,所以A(2,0);B点为y=x-2与y轴的焦点,则B(0,y),代入y=0-2,y=-2,则B(0,-2)(2)已知y=k