如图,直线y=x k与y轴交于ab,与双曲线y=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:06:18
设A(a,ka),则ka²=-3又OA=OB,AB²-4×OC²=4(OA²-OC²)设AC:y=-x+b过A(a,ka),得b=a(k+1)=OCO
(1)由题知直线AC为y=-1/2x-2则点C(0,-2)代入抛物线得b=-5/2c=-2带回抛物线得y=-1/2x2-5/2x-2令y=0则x=-4x=-1则B(-1.0)(2)存在,两种情况,1.
(1)将直线y=-2x+12与直线y=x联立解得点C的坐标为C(4,4)(2)将直线y=-2x+12与直线y=0(即x轴)联立解得点A的坐标为A(6,0)故三角形AOC的面积为6*4÷2=12(3)由
(1)令y=0,得x=-32,∴A点坐标为(-32,0),令x=0,得y=3,∴B点坐标为(0,3);(2)设P点坐标为(x,0),∵OP=2OA,A(-32,0),∴x=±3,∴P点坐标分别为P1(
y=-x+4y=k/x(k≠0)x^2-4x+k=0△=04k=16,k=4,y=4/xy=-x+4,D点坐标:(2,2)2)四边形OEDF的面积=2*2=43)②(AE^2)+(BF^2)=(EF^
(1).y=-x²+2x+3=-(x²-2x)+3=-[(x-1)²-1]+3=-(x-1)²+4对称轴:x=1;顶点P(1,4);C(0,3);A(-1,0)
(1)二者的底相同(DE),只需其上的高相等即可,即CP与DE平行。CP的斜率也是2,C(0,-4),CP的方程为y=2x-4(点斜式)y=2x-4=x²+3x-4x=-1(另一解x=0为点
(3)抛物线y=1/2x²-3/2x+1对称轴是x=3/2,设M(3/2,Y),∵B、C关于x=3/2对称,∴MC=MB,∴要使|AM-MC|最大,便是使|AM-MB|最大,由三角形两边之差
(1)y=1/2x+1与y轴交于点A,可以得到A点坐标为(0,1),又知B点坐标为(1,0),代入y=1/2x²+bx+c,解得b=-3/2,c=1,该抛物线的解析式为y=1/2x²
由题意,在OC上截取OM=OP,连结MQ,∵OP平分,∴∠AOQ=∠COQ又OQ=OQ,∴△POQ≌△MOQ(SAS),∴PQ=MQ,∴AQ+PQ=AQ+MQ,当A、Q、M在同一直线上,且AM⊥OC时
(1)①由题意,y=-2x+12,y=x\x09解得x=4,y=4所以C(4,4)\x09②令y=0,-2x+12=0,解得x=6,∴A(6,0)∴OA=6∴S△OAC=1/2×6×4=12\x09(
四边形DNAE的面积与四边形CMAF的面积相等.过M作MP⊥Y轴NQ⊥Y轴,分别交Y轴于点P与点Q∵因为四边形DNAE和四边形CMAF是平行四边形∴S平行四边形DNAE=DN×NQS平行四边形CMAF
(1)过C做X轴的平行线,交X于点D,三角形AOC面积等于OA*CD=2CD/2=3.得CD=3.又因为C为第三相限点,所以C的纵坐标为-3.将Y=-3带入L1方程得X=-1.再将X=-1,Y=-3带
∵直线L1:y=x-2交x轴于点A,交y轴于点B∴A(2,0)B(0,﹣2)设C(X,Y)∴S△AOC=1/2×|OA|×|Y|=1/2×2×|Y|=3∴Y=±3∵与直线l2:y=kx-4交于点c∴C
直线y=-根号3x+4与直线y=-根号3x是平行线,不可能相交,请改正!
(1)点P(m,6)在直线L2:y=-2x的图象上,则:6=-2m, m=-3,即点P为(-3,6),点P又在直线L1:y=-x+b的图象上,故:6=-(-3)+b,b=3.即直线L1为:&
(1)A点位y=x-2与x轴的焦点,所以A(x,0),代入0=x-2,x=2,所以A(2,0);B点为y=x-2与y轴的焦点,则B(0,y),代入y=0-2,y=-2,则B(0,-2)(2)已知y=k