如图,直线交X轴.y轴于A.B两点,以AB为边作正三角形ABC,=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 07:57:16
如图,直线交X轴.y轴于A.B两点,以AB为边作正三角形ABC,=
如图,在平面直角坐标系中,直线y=负2+12与x轴交于点A,与y轴交于点B,与直线y=x交于点C.

(1)将直线y=-2x+12与直线y=x联立解得点C的坐标为C(4,4)(2)将直线y=-2x+12与直线y=0(即x轴)联立解得点A的坐标为A(6,0)故三角形AOC的面积为6*4÷2=12(3)由

如图,直线y=2x+3与x轴交于点A,与y轴交于点B.

(1)令y=0,得x=-32,∴A点坐标为(-32,0),令x=0,得y=3,∴B点坐标为(0,3);(2)设P点坐标为(x,0),∵OP=2OA,A(-32,0),∴x=±3,∴P点坐标分别为P1(

如图直线y=2x+4交x轴于A,交y轴于B,过B的直线交x轴的正半轴于点C,且s三角形ABC=16.

一、较简单!(6,0)二、1、过点D分别作直线AB、BC的垂线,垂足分别为P、Q-------DP=DQ、直角相等;2、由∠BAD+∠BCD=180°--------------∠DAP=∠DCQ;3

已知:如图,直线y=-x+4与x轴、y轴分别交于A、B两点.

y=-x+4y=k/x(k≠0)x^2-4x+k=0△=04k=16,k=4,y=4/xy=-x+4,D点坐标:(2,2)2)四边形OEDF的面积=2*2=43)②(AE^2)+(BF^2)=(EF^

如图,直线y=3/7x+3分别交x轴、y轴于A,B两点.

(1)很简单,21/2(2)也简单,可求得D坐标为(-4,-4),故函数为y=16/x(3)容易求得AD=DE=5,AE=5√2.所以△ADE为等腰直角三角形.所以角DAE为45度

如图11,在平面直角坐标系中,直线Y=1\2X+4交X轴于点A,交Y轴于点B.(1)直线Y=-X+10交直线AB于点D,

1.要使S三角形AEF=1\4S三角形ACD,且EF//CD,则AF=1/2AC根据A,C的坐标可得F(1,0)或(-17,0)设EF的解析式Y=-X+b,将F坐标代入Y=-X+1或Y=-X-172.

如图,抛物线y=ax²+bx+c交x轴于A、B两点,交y轴于点c,对称轴为直线x=1,

1.已知三点A(-1,0),B(3,0),C(0,-3),得到抛物线y=x²-2x-32.只有在∠APC为直角的时候,△APC周长最小,∠APC为直角,可以得到两个点,分别为(1,-1)(1

如图,直线ab分别与x,y轴的正半轴相交于点A(a,0)和B(0,b),直线y=0.5x+3,交Y轴于点E,交AB于点F

先说思路,一般做证明题,你可以反着推,就是将求证的东西当成已知的条件,这样你就可以得出很多条件,然后把这些和题目当中的条件对比,这样就方便你去从什么方向着手解题了.这个题,你将求证的条件当已知,你会发

如图,直线y=3x+3交x轴于A点,交y轴于B点,过A、B两

解题思路:利用二次函数计算解题过程:请看附件最终答案:略

如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点

(1)对于直线AB:y=-1/2x+2当x=0时,y=2;当y=0时,x=4则A、B两点的坐标分别为A(4,0)、B(0,2);(2)∵C(0,4),A(4,0)∴OC=OA=4,∴OM=OA-AM=

如图,直线AB与反比例函数y=4/x(x>0)图像交于点M,N,交y轴、x轴于点A,B.

四边形DNAE的面积与四边形CMAF的面积相等.过M作MP⊥Y轴NQ⊥Y轴,分别交Y轴于点P与点Q∵因为四边形DNAE和四边形CMAF是平行四边形∴S平行四边形DNAE=DN×NQS平行四边形CMAF

如图,在平面直角坐标系中,直线l1:y=x-2交x轴于点A,交y轴于点B,与直线l2:y:=kx-4交于点C,且S△AO

(1)过C做X轴的平行线,交X于点D,三角形AOC面积等于OA*CD=2CD/2=3.得CD=3.又因为C为第三相限点,所以C的纵坐标为-3.将Y=-3带入L1方程得X=-1.再将X=-1,Y=-3带

如图,在平面直角坐标系中,直线L1:y=x-2交x轴于点A,交y轴于点B,与直线l2:y=kx-4交于点c,且s△AOC

∵直线L1:y=x-2交x轴于点A,交y轴于点B∴A(2,0)B(0,﹣2)设C(X,Y)∴S△AOC=1/2×|OA|×|Y|=1/2×2×|Y|=3∴Y=±3∵与直线l2:y=kx-4交于点c∴C

如图直线y=4/3x+4交x轴于点B,交y轴于点A,圆M过A,O两点

(1)根据题意说明圆O'以AO为直径则OC为半径:R=4/2=2三角形ACO为直角三角形则弦长AC=√(AO²-OC²)=√(4²-2²)=2√3(2)圆心O在

如图,平面直角坐标系中,直线AB:-1/3x+b交y轴于点A(0,1),交x轴于点B.

(1)解析式:y=-1/3x+1,B(3,0)(2)过P做y轴垂线,垂足为F,则S△ABP=S梯形OBPF-S△ABO-S△APF=1/2(1+3)*n-1/2*1*3-1/2*1*(n-1)=3/2

如图,直线l1:y=-x+b与x轴交于点A,与y轴交于点B,与直线l2:y=-2x交于点(m,6)

(1)点P(m,6)在直线L2:y=-2x的图象上,则:6=-2m, m=-3,即点P为(-3,6),点P又在直线L1:y=-x+b的图象上,故:6=-(-3)+b,b=3.即直线L1为:&

如图,直线AB分别交x轴、y轴于A,B两点.

如图:两点确定一条直线.A(-1,0)绕原点O沿逆时针方向旋转90°得A1(0-1)B(0,2)绕原点O沿逆时针方向旋转90°得B1(-2,0)A1B1方程为: y2=-1/2x-1两直线垂