如图,角abc是正三角形,将各边三等分,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 16:13:55
如图,角abc是正三角形,将各边三等分,
如图,已知△abc是正三角形,p为三角形内一点,且PA=3

可把三角形ABC内的三个三角形分别沿AC,BC,AB折叠,得到对应点P,P2,P3,得到一个六边形,三角形ABC的面积为六边形面积的1/2,然后再连接P1P2P3得到四个特殊的四边形,此题答案也就出来

如图,在直角三角形ABC中,角CAB=90度,角CAB=30度,D是BC上任一点,说明三角形CEF式正三角形的理由

根据直角三角形斜边上的中线等于斜边的一半,这条原理解答.因为:RT△ACD中,CF是斜边AD上的中线所以:CF=AF=FD△FAC是等腰三角形,∠AFC=180°-2∠CAF同理因为:RT△AED中,

如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB.

(1)因为将△PAC绕点A逆时针旋转后,得到△P′AB.所以P点对应P'点,C点对应B点因此,PA=P'A且∠PAP'=∠CAB=60°,所以△P′AB是正三角形(2)因为PA=P'A且∠PAP'=6

如图,三角形abc是正三角形,三角形bdc是等腰三角形,bd等于cd,角bcd等于120度,以d为顶点作一个60度的角,

BM+CN=MN.证明:BD=CD,∠BDC=120°,则∠DBC=∠DCB=30°,∠DBA=∠DCA=90°.延长AC到P,CP=BM,连接DP,则⊿DCP≌⊿DBM,DP=DM;∠PDC=∠MD

如图,将正三角形ABC绕O点逆时针方向旋转120度,作出旋转后的图形

将A,B,C三点与O点连接起来,分别将OA,OB,OC逆时针方向旋转120度,就可以了

如图,△DEF是正三角形,AD=BF=EC,求证:△ABC是正三角形.

如果用初中的做法的话,如下:经过仔细推敲,暂时未发现证明过程有问题

初二几何有关中位线的如图,已知三角形ABC是锐角三角形,分别以AB.AC为边向外作两个正三角形ABM和正三角形CAN,D

连接BN,CM∵等边△ACN,等边△ABM∴AB=AM,AC=AN∠CAN=∠BAM=60°∴∠CAN+∠BAC=∠BAM+∠BAC即∠BAN=∠CAM∴△BAN≌△MAC∴BN=CM又∵BN=2EF

如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10,若将三角形PAC绕点A逆时针旋转后,得到三角形P'A

假定等边△ABC的边长为k,作BC边上的高AD,则BD=k/2,由勾股定理得:AD²=AB²-BD²=k²-k²/4=3k²/4AD=(√3

操作:如图1,三角形ABC是正三角形,三角形BDC是顶角,角BDC=120°的等腰三角形

三角形BDC是等腰三角形,且∠BDC=120°,所以∠BCD=∠DBC=30°三角形ABC是边长为3的等边三角形,∠ABC=∠BAC=∠BCA=60°∠DBA=∠DCA=90°顺时针旋转三角形BDM使

如图,正三角形ABC外接圆的半径为R,求正三角形ABC的边长,边心距,周长和面积.

正弦定理a/sinA=2R(R为外接圆的半径)边长为aa=2R*sin60°=√3*R边心距d是外接圆半径的一半d=R/2周长=3√3*R面积S=3*边长*边心距/2=3√3*R^2/4

如图,正三角形abc的外接圆半径是m,内有正六边形defghr,求正六边形的周长

知道是正六边形了,知道是正三角形了,说明三个小三角形全等,又说明了正六边形的周长为三角形的两天变,连接AO,过目点垂直于AC交于O1,OO1=1/2m,求出AO1,4AO1就是答案

如图以三角形ABC各边为边,在BC内侧作正三角形BCE,正三角形ACE,正三角形ADB.连结DE、EF.

考查△FEC和△ABC,由题意知FC=AC,EC=BC,∠FCE=∠ACB=60°-∠ECA,所以△FEC≌△ABC,FE=AB=AD.同理可证△DBE≌△ABC,得DE=AC=AF.在四边形DAFE

如图,P是正三角形ABC内一点,PA=3,PB=4,PC=5,将线段PA以点A为旋转中心逆时针旋转60度得到线段AP1,

可以将三角形绕顶点A逆时针选60度,使得AB与AC边重合,p点相应点为P',则可看到得到三角形pP'C;pP'=3;(可以知道角pAP'为等边三角形)P'C=pB=4;pC=5;即可知pP'与P'C垂

如图,p是正三角形ABC内的一点,若将三角形PAB绕点A逆时针旋转到三角形P'AC,则角PAP'等

∵△P‘AC是△PAC绕点A旋转得到的∴△PAB≌△P’AC∴∠P‘AC=∠PAC∵△ABC是等边三角形∴∠BAC=60°∴∠PAP’=∠P‘AC+∠PAC=∠PAC+∠PAB=∠BAC=60°记得及