如图,过抛物线y2=2x焦点,倾斜角为45,中点FM

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:46:34
如图,过抛物线y2=2x焦点,倾斜角为45,中点FM
如图,倾斜角为α的直线经过抛物线y2=8x的焦点F,且与抛物线交于A、B两点.

(1)设抛物线C:y2=2px(p>0),则2p=8,从而p=4因此焦点F(2,0),准线方程为x=-2;(2)证明:作AC⊥l,BD⊥l,垂足为C,D.则由抛物线的定义,可得|FA|=|AC|,|F

如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A、B,交其准线于点C,若|BC|=2|BF|,且|AF

设A(x1,y1),B(x2,y2),作AM、BN垂直准线于点M、N,则|BN|=|BF|,又|BC|=2|BF|,得|BC|=2|BN|,∴∠NCB=30°,有|AC|=2|AM|=6,设|BF|=

抛物线y^2=4x的焦点为f,过f的直线交抛物线于a(x1,y1),b(x2,y2)两点,则y1y2/x1x2=

解据题意抛物线焦点为(1,0)当过焦点的直线斜率不存在时,直线方程为x=1则x1=1,x2=1,y1=2,y2=-2y1y2/x1x2=-4当直线斜率存在时,设为k则直线方程为y=k(x-1)那么y1

抛物线y2=2x与过焦点的直线交于A、B两点,焦点指什么,怎么求

抛物线y^2=2px=2xp=1那么p/2=1/2故抛物线的焦点是(1/2,0)如果不懂,请Hi我,祝学习愉快!

如图,过抛物线y2=2px(p>0)的焦点F的直线L交抛物线于点A、B,交其准线于点C,若BC=2BF,且AF=3,则此

A,B两点到准线的距离分别为AD,BG根据抛物线的定义可知AD=AF=3;BG=BF=BC/2OF与准线的交点为EΔCBG∽ΔCAD∴BC/AC=BG/AD∴AC=BC/BG×AD=2×3=6∴FC=

设抛物线y2=2x的焦点为F,

解题思路:利用三角形面积公式解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/rea

如图,已知过抛物线y^2=2px(p>0)的焦点F的直线x-my+m=0与抛物线

答:抛物线y^2=2px(p>0)的焦点F为(p/2,0)直线x-my+m=0经过焦点:p/2-0+m=0,m=-p/2再问:好聪明啊,谢谢!

抛物线+直线过抛物线y^2=4x的焦点作直线,交抛物线于点A(x1,y1)B(x2,y2),若y1+y2=2乘根号2,则

易知,p=2,F(1,0),由于直线过点F,故设直线AB的方程为x=my+1(点斜式的对偶形式)代入y²=4x,得y²-4my-4=0,所以y1+y2=4m=2√2解得m=√2/2

抛物线的标准方程过抛物线Y2=4X的焦点作直线交抛物线于A(X1,X2),B(Y1,Y2)两点,如果XI+2=6,则AB

根据过抛物线焦点的直线的性质,AB的绝对值为x1+x2+2p,设A点的坐标为(x1,y1),B点的坐标为(x2,y2).由XI+2=6,可知A点为(4,4),根据A点与焦点坐标可得过焦点的直线方程为y

如图,过抛物线Y2=2px(p>0)的焦点F的直线与抛物线相交于M,N两点,自M.N向准线L作垂线,垂足分别为M1,N1

设直线斜率为k,因为直线过焦点(p/2,0),所以直线为y=k(x-p/2),所以x=y/k+p/2,联立y2=2px,得到ky2-2py-p2k=0.所以y1*y2=-p2PM1的斜率k1=y1/(

过抛物线y2=4x的焦点作直线交抛物线于a(x1,y1)b(x2,y2)两点若y1+y2=2倍根号2则|ab|的值为

焦点(1,0)y=k(x-1)y²=4xk²(x-1)²=4xk²x²-(2k²+4)x+k²=0x1+x2=(2k²+

如图,已知抛物线y2=4x的焦点为F,过点P(2,0)的直线交抛物线于A(x1,y1)B(x2,y2)两点

(1)直线斜率kAB=(y2-y1)/(x2-x1)把y^2=4x代入得kAB=4/(yi+y2)直线方程为y=4/(y1+y2)(x-2)代入点A(x1,y1)得y1(y1+y2)=y1^2-8得y

过抛物线y2=4x的焦点,作倾斜角为π4

设P(x1,y1),Q(x2,y2),则S=12|OF|•|y1-y2|.过抛物线y2=4x的焦点(1,0),倾斜角为π4的直线为x-y-1=0,即x=1+y,代入y2=4x得:y2=4(1+y),即

过抛物线y^2=2px(p>0)的焦点作一条直线,叫抛物线于点A(x1,y1),B(x2,y2),则(y1*y2)/(x

A.4焦点(p/2,0)直线方程y=k(x-p/2)y^2=k^2x^2-k^2px+k^2p^2/4-2px=0k^2x^2-(k^2p+2p)x+k^2p^2/4=0x1x2=p^2/4(y1^2

直线l过抛物线y^2=29x(p>0)的焦点,且与抛物线相交于A(x1,y2),B(x2,y2)两点,点C在抛物线的准线

证明,由题意可知抛物线的焦点为(29/4,0)直线AB方程为y=k(x-29/4)代入曲线方程的y^2-29/k*y-29^2/4=0有根公式可得y1+y2=29/ky1*y2=-29^2/4有由题可

过抛物线 y2=4x 为焦点 F弦长为3/16 求弦所在的抛物线~

过抛物线y^2=4x焦点F(1,0)的弦AB长=16/3,设A(x1,y1),B(x2,y2),则|AB|=|AF|+|FB|=x1+1+x2+1=16/3,∴x1+x2=10/3,AB的斜率k=(y

过抛物线y^2=4x焦点做直线交抛物线于A(x1,y1)B(x2,y2),若y1+y2=5,求线段AB

焦点(1,0),准线x=-1A到准线距离=x1-(-1)=x1+1B到准线距离=x2+1抛物线上的点到焦点和到准线距离相等所以AB=AF+BF=A到准线距离+B到准线距离=x1+1+x2+1=x1+x

已知过抛物线y2=4x的焦点F的直线交该抛物线于A、B两点,|AF|=2,则|BF|=______.

由抛物线的定义.抛物线上任一点到焦点的距离与到准线的距离是相等的.已知|AF|=2,则到准线的距离也为2.根据图形AFKA1,是正方形.可知|AF|=|AA1|=|KF|=2∴AB⊥x轴故|AF|=|

过抛物线y=4x^2的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,若y1+y2=5

/>利用抛物线的定义即可抛物线x²=(1/4)y准线是y=-1/16,焦点F(0,1/16)利用抛物线的定义|AF|=y1+1/16,|BF|=y2+1/16∴|AB|=|AF|+|BF|=

过抛物线y2=2x 的焦点F作直线

抛物线的过焦点弦有个性质:1/|AF|+1/|BF|=2/p.本题中,2p=2,因此p=1,所以1/|AF|+1/|BF|=2,-----------(1)又|AF|+|BF|=25/12,-----