如图.如图已知等边三角形ABC.请画出它的外接圆与内切圆

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:02:07
如图.如图已知等边三角形ABC.请画出它的外接圆与内切圆
已知:如图,△ABC和△ADE都是等边三角形,求证:EB=DC

在△ACD和△ABE中AC=AB∠CAD=∠BAEAD=AE∴△ACD≌△ABE(SAS)∴EB=DC

【如图,已知在等边三角形ABC中,D是BC边上一点...

∵△ABD和△CBE中,∠ABD=∠CBE=60°,AB=CB,BD=BE∴△ABD≌△CBE∵△ABN和△CBM中,∠ABN=60°+60°=120°,∠CBM=180°-60°=120°=∠ABN

如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上

解题思路:(1)根据等边三角形的性质证明△ABE≌△CAD就可以得出结论;(2)由三角形全等可以得出∠ABE=∠CAD,由外角与内角的关系就可以得出结论.解题过程:如图,已知△ABC为等边三角形,点D

已知:如图,△ABC和△ADE都是等边三角形,求证:EB=DC

证明:,△ABC和△ADE都是等边三角形所以角CAB=角BAE=60度,AC=AB,AD=AE所以三角形CAD全等于三角形BAE(边角边)所以EB=DC

已知,如图,△abc和△ade都是等边三角形求证,eb=dc

证明:三角形ABC和三角形ADE是等边三角形,则AD=AE,AB=AC,角CAD=角BAE,则三角形CAD全等于三角形BAE,所以,EB=DC

如图,已知三角形ABC和三角形BDE都是等边三角形,求证AD=CE

△ABC和△BDE都是等边三角形∴∠ABD=∠CBE=60AB=BCBD=BE(边角边相等)∴△ABD全等于△CBE∴AD=CE

如图,已知:三角形ABC,三角形DEC都是等边三角形.求证:AE平行BC.)

证明:因为三角形ABC,三角形DEF是等边三角形所以DC=EC,AC=BC,角ECD=角ACB=60度所以角ECA=角DCB在三角形AEC与三角形DBC中,DC=EC,AC=BC,角ECA=角DCB所

已知,如图,△ABC和△CDE都是等边三角形,

1.AD=BE,∠AEB=60°,证明如下:∵ΔABC,ΔCDE是正Δ∴CB=CA,CE=CD,∠BCA=∠ECD=60°∴∠BCE=∠BCA+∠ACE=∠ECD+∠ACE=∠ACD∴ΔBCE≌ΔAC

如图,已知△ABC和△DEC均为等边三角形 试说明AD=BE

△ACD和△BCE中AC=BC,CD=CE,角ACD=角BCE=60°+角ACE所以△ACD≌△BCE,从而AD=BE

已知:如图,AD,BE,CF是等边三角形ABC的角平分线.求证:△DEF是等边三角形.

∵△ABC为等边三角形,且AD=BE=CF∴AF=BD=CE,又∵∠A=∠B=∠C=60°,∴△ADF≌△BED≌△CFE(SAS),∴DF=ED=EF,∴△DEF是一个等边三角形.再问:可以再具体些

已知:如图,ad、be、cf是等边三角形abc的角平分线 求证:三角形def是等边三角形

证明:∵△ABC是等边三角形∴∠EAF=∠EBD=60°,AB=BC=AC∵AD,BE,CF分别平分∠BAC,∠ABC,∠ACB∴AF=BF=二分之一AB,AF=二分之一AC,BD=二分之一BC∴AF

如图,在等边三角形ABC中

解题思路:等边三角形的性质以及全等三角形的性质是解决问题的关键解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prced

已知:如图,等边三角形DEF的顶点分别在等边三角形ABC的边上.求证:AD=BE=CF

不妨设D,E,F分别在边AB,BC,AC上.∵△ABC,△DEF为正三角形,∴∠A=∠B=∠C=60∠EDF=∠FED=∠EFD=60∠,DE=DF=EF∴∠BDE+∠ADF=180-60=120∠A

如图,已知△ABC是等边三角形,CD=BF,且四边形CDEF是平行四边形,求证:△AED是等边三角形

图嘞?没有话,把各个点的位置说明白也行!再问:hyj再答:利用题中已知条件,可证明△ACD≌△CBF(利用边角边证明即可)又∵四边形CDEF是平行四边形∴AD=CF=DE∠FCB=∠EDB=∠FED∵

已知:如图,AD、BE、CF是等边三角形ABC的角平分线.求证:△DEF的等边三角形

AD、BE、CF是等边三角形ABC的角平分线,又由等边三角形四线合一(中线,角平分线,中垂线,高线),所以D,E,F为中点,那么DE,DF,EF为中位线,又因为AB=AC=BC所以DE=DF=EF.即

如图,已知△ABC是等边三角形

解题思路:过D作DM∥AB交BC于M,则△CDM为等边三角形,得CD=DM,而BE=CD,得到DM=BE,易证得△FDM≌△FEB,根据全等三角形的性质即可得到结论;解题过程:varSWOC={};S

格式为 ∵ ∴已知 如图,△ABC是等边三角形,BD是中线,延长BC到E,已知 如图,△ABC是等边三角形,BD是中线,

∠CBA=∠CED+∠CDE=2∠CED所以∠CED=30度,所以EF=2分之根号3,所以DE为根号3CF^2=CE^2-(DE/2)^2CF=05再问:格式不对哟,改对了就采纳分就是你的再答:∵∠C