如图1 四边形abcd是矩形 e为ad上一点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:21:17
如图1 四边形abcd是矩形 e为ad上一点
如图,四棱锥P-ABCD中,四边形ABCD为矩形,平面PAD垂直平面ABCD,E,F分别为PC和BD的中点

这种题目,你要理解它的意思.当一些条件没有限定的时候,就要明白,它是一个通例.比如PD没有限定长度,那就是说,面PDC垂直于面PDA是一定的.所以,你要明白它为什么可以垂直.算了,不废话了,直接上答案

如图,已知四边形ABCD为平行四边形,点E在AB的延长线上,CE∥BD,且CE=CA,求证:四边形ABCD是矩形

因为E在AB的延长线上,所以DC//BE因为CE//BD,所以EBDC是平行四边形,所以DC=BE因为ABCD是平行四边形,所以DC=AB,所以AB=BE因为AC=CE,所以角ABC是90度,所以AB

如图,矩形ABCD的面积为32平方厘米,AB=4cm,点E,F分别在BC,AD上,且四边形AECF是菱形

∵S矩形ABCD=32,AB=4∴BC=32/4=8∵四边形AECF是菱形∴AE=EC设BE=x,则EC=BC-BE=8-x=AE∵在Rt△ABE中,AB²+BE²=AE²

如图.在平行四边形ABCD中,E为CD中点,三角形ABE是等边三角形,求证:四边形ABCD是矩形.

因为ABCD是平行四边形所以AD=BC因为三角形ABE是等边三角形所以EA=EB因为E是CD的中点所以DE=CE所以三角形ADE全等于三角形BCE所以∠D=∠C因为ABCD是平行四边形所以∠C+∠D=

如图,四边形ABCD的对角线AC、BD互相垂直,E、F、G、H分别为四边中点.求证:四边形ABCD为矩形

证明:∵E、F、G、H分别为四边中点∴EF‖AC,EF=1/2AC,GH‖AC,GH=1/2AC∴EF‖GH,EF=GH∴四边形EFGH是平行四边形∵AC⊥BD∴EF⊥EH(∵EH‖BD,EF‖AC)

如图,四边形ABCD为矩形,且AD=2,AB=1,PA⊥平面ABCD,E为BC上的动点

四边形ABCD为矩形,且AD=2,AB=1,PA⊥平面ABCD,E为BC上的动点(1)当E为BC的中点时,AE²=ED²=2,PE²=PA²+AE²=

如图E、F、G、H分别是矩形ABCD的各边中点,求证:四边形EFGH是菱形.

证明:连接BD,AC.∵矩形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,∴AC=BD,∴EF=12AC,EF∥AC,GH=12AC,GH∥AC同理,FG=12BD,FG∥BD,EH=

已知:如图,在平行四边形ABCD中,E是AB的中点,ED=EC,求证:四边形ABCD是矩形

ABCD是平行四边形,所以AD=BC.E是AB的中点,所以AE=BE,ED=EC所以三角形ADE全等于三角形BCE,所以角EAD=角EBC.因为AD//BC,所以角DAE+角EBC=180所以角EAD

如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE求证四边形ABCD是矩形

∵ABCD是平行四边形∴AB=DC,AB∥DC∵BE=CF∴BE+EF=EF+CF即BF=CE∵AF=DE∴△ABF≌△DCE(SSS)∴∠B=∠C∵AB∥DC即∠B+∠C=180°∴∠B=∠C=90

如图E,F,G,H分别是四边形ABCD四条边的中点,要使四边形EFGH为矩形,四边形ABCD应具备的条件是( )

联结对角线,根据三角形中位线定理,只要保证对角线互相垂直就可以

如图,在矩形ABCD中,BE平分∠ABC交AD于E,EF垂直BC,垂足为F,求证四边形ABFE是正方形.

∵ABCD是矩形,∴∠A=∠ABC=90°,∵EF⊥BC,∴∠BFE=90°,∴四边形ABFE是矩形,∵BE平分∠ABC,∴∠ABE=45°,∴ΔABE是等腰直角三角形,∴AB=AE,∴矩形ABFE是

已知:如图,在矩形ABCD中,BE平分∠ABC,交AD于点E,EF⊥BC,垂足为F.求证:四边形ABFE是正方形

显而易见矩形ABCD四个角都是直角,BE平分∠ABC,得到两个角都是45°所以三角形ABE就是等腰直角三角形,所以AE=AB然后EF⊥BC,ABFE四个角又都是直角,而且邻边相等所以是正方形得证

如图,四棱锥P-ABCD中,四边形ABCD为矩形,△PAD为等腰三角形,平面PAD⊥平面ABCD,且E,F分别为PC和D

我的月考题再问:会做吗,会的话能写一下解题过程吗再答:连接AC交F点,EF为三角形pac中位线。大体就这样了再答:我高二……不知道对不对,谅解~~再答:应该没问题吧再答:要过程?再问:能不能详细点,我

关于四边形如图,四边形ABCD是矩形纸片,把纸片ABCD折叠,使B点恰好落在CD边中点E处,折痕为AE.若CD=6,则A

方法一:因为折叠四边形ABCD为矩形纸片,所以AB=AE=CD=6,BF=EF所以可以求AD=BC因为BF+FC=BC,(BF的平方)-(FC的平方)=(CE的平方)所以(AF的平方)=(AB的平方)

已知,如图,从菱形abcd的对角线的交点o分别向各边引垂线,垂线分别是e,f,g,h,求证:四边形efgh为矩形

这个本来就是定理.证明:依题意得Rt△AOB≌Rt△AOD≌Rt△COD≌Rt△COB根据勾股定理可得EO=FO=GO=HO∴EG=FH又根据中点四边形定理,四边形EFGH是平行四边形∵EG=FH(对

如图,E为平行四边形ABCD外一点,AE⊥EC,BE⊥DE,求证:四边形是矩形.

证明:设平行四边形ABCD的两对角线AC与BD相交于点O,连接OE∵四边形ABCD是平行四边形∴点O是AC、BD的中点,∵AE⊥EC,BE⊥DE,∴OE=1/2AC,OE=1/2BD(OE即是直角三角

如果一个矩形的宽与长的比是黄金比,那么这个矩形称为黄金矩形,如图,已知四边形ABCD为黄金矩形,

设AB=a,BC=b,则b/a=(√5-1)/2依题意,BE=AB-AE=a-b,所以BE/BC=(a-b)/b=a/b-1=2/(√5-1)-1=2(√5+1)/(√5+1)(√5-1)-1=(√5

如图,在平行四边形ABCD中,E是CD的中点,EA=EB求证四边形ABCD是矩形

∵四边形ABCD是平行四边形∴AD=BC,∠C+∠D=180°又EA=EB,E是CD的中点∴△ADE≌△BCE∴∠C=∠D∴∠C=∠D=90°所以四边形ABCD是矩形(有一个角是直角的平行四边形是矩形

如图,在平行四边形ABCD中,E,F为BC上的两点,且BE=CF,AF=DE,求证四边形ABCD是矩形

因为ABCD为平行四边形,所以AB=DC.因为BE=FC,所以BE+EF=CF+EF,即BF=EC因为在三角形ABC和三角形EDC中,AB=DCBF=ECAF=ED所以三角形ABF全等于DEC,角B=

如图,矩形ABCD的对角线AC的垂直平分线与边AB,CD的交点为E,F.求证:四边形AFCE是菱形

这是几年级的题,这么简单还要问啊,都是一些简单定理,EF是AC垂直平分线,所以AE=EC,AF=FC,同时AO=CO,所以EO=FO,所以AC也是EF的垂直平分线,所以AE=AF,CE=CF,得到四边