如图1,△ABC中,∩BAC=90°,AB=AC,D,E在BC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:22:49
∠PCA=120°-α,60°
(1)证明:∵AD平分∠BAC∴∠BAD=∠CAD∵BE平分∠ABC∴∠ABE=∠CBE∵∠BED=∠BAD+∠ABE∴∠BED=∠CAD+∠CBE∵弧CD=弧CD∴∠CAD=∠CBD(同弧的圆周角相
因为三角形ABP旋转60度以后得到三角形QDB所以角ABQ=60度,角ABP=角QDB,BP=BD,PA=QD因为角BAC=120度所以角QAB=60度又因为角ABQ=60度所以三角形ABQ是等边三角
∵CD=DF∴∠DCF=∠DFC∵∠DFC=∠AFE∴∠DCF=∠AFE∵CE⊥AB∴∠AFE+∠BAD=90°∠EBC+∠DCF=90°∴∠BAD=∠EBC∴BD=AD
证明:延长CE交AB于F,∵CE⊥AD,∴∠AEC=∠AEF,∵AD平分∠BAC,∴∠FAE=∠CAE,在△FAE和△CAE中∵∠FAE=∠CAEAE=AE∠AEF=∠AEC,∴△FAE≌△CAE(A
OA平分角BAC,所以角BAO等于角CAO,因为角1等于角2,所以有180度-角BAO-角1=180度-角CAO-角2.即:角BOA=角COA,又因为公用边OA=OA,根据三角形相等规则:两角及其夹边
证明:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ABD和△ACD中AB=AC∠BAD=∠CADAD=AD,∴△ABD≌△ACD.
没图没关系,但D是哪里的?∠1和∠2,∠3是什么角要交代清楚
证明:∵AD平分∠BAC∴∠BAD=∠CAD∵BE平分∠ABC∴∠ABE=∠CBE∵∠BED=∠BAD+∠ABE∴∠BED=∠CAD+∠CBE∵弧CD=弧CD∴∠CAD=∠CBD(同弧的圆周角相等)∴
这个题好做.如答图所示:连接A‘B,过点B作AC的垂线交AC的延长线于点D∵∠BAC=30°∴BD=1/2x4=2在Rt△ABD中,AD=√4²-2²=2√3∴B(-3,-2√3)
因为:在△ABD中,∠B=∠BAC,∠ADC=1/2∠CAD∠B+∠BAC+∠CAD+∠ADC=180所以:2∠BAC+3/2∠CAD=180℃4∠BAC+3∠CAD=360℃・
作EF垂直BA延长线于F,EG垂直AC于G,EH垂直BC延长线于H因为BE平分∠ABC,推出EH=EF因为CE平分∠ACB的外角,推出EH=EG所以EF=EG又有公共边AE,所以直角三角形AFE和AG
原题:如图,在三角形ABC中,AD平分角BAC,BE平分角ABC,CE平分角ACB的外角, 求证:(1)AE是角BAC外角的平分线 (2)AE垂直AD证明:
∵在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F∴DE=DF∵△ABC面积是28cm2,AB=20cm,AC=8cm∴S△ABC=1/2AB•DE+1/2ACR
∠BAC120度∠ABD60度
(1)因为角ABC=30°,角ACB=60°,所以角BAC=90°,又因为AE平分角BAC,所以角EAC=45°,AD⊥BC,所以角ADC=90°,角DAC=30°,那么角DAE=45°-30°=15
(1)证明:∵AB=AC,∠ADB=∠ADC=90°,AD=AD∴△ADB≌△ADC,∴∠DAB=∠DAC=1 2 ∠BAC=22.5°,∵点E与点D关于AB对称,∴△AEB≌△A
把△APC绕A逆时针旋转60°得到△AP′C′,如图∴∠CAC′=∠PAP′=60°,AC=AC′,AP=AP′,PC=P′C′,∴△APP′为等边三角形,∴PP′=AP,∵∠BAC=120°,∴∠B
BD=BC=>∠DBC=∠DCB∠1=∠2=>∠ABC=∠ACB=>AB=AC∠DBC=∠DCB=>△ABD≌△ACDBD=CD=>∠BAD=∠CAD=>AD平分∠BAC
解题思路:请把图发过来解题过程:请把图发过来最终答案:略