如图1,三角形abc是直角三角形,角c等于90度,现将三角形abc补成矩形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 02:15:30
如图1,三角形abc是直角三角形,角c等于90度,现将三角形abc补成矩形
在如图12.1-4所示的直角三角坐标系中,三角形ABC各顶点的坐标A(-1,3)B(-2,-1)C(2,0)求三角形的面

如图,将三角形分为两部分Y轴上半周是一部分,下半轴是一部分分别从A,B两点向X轴作垂线,得到两条高线,长度分别为3,1由AB两点坐标得出直线AB方程4X-Y+7=0,令Y=0,得出AB直线与X轴交点D

如图,三角形ABC中,AI、BI分别平分角BAC、角ABC,CE是三角形

这道题不是你看错打错就是你没有写完.注意:AI与BI中的“I"重复啦.还有CE中的E又从哪儿跑出来的.

如图在RT三角形ABC中,CD是直角C的角平分线,E为AB的中点,PE垂直AB交CD延长线于P求证三角形ABC为直角三角

∵PE垂直平分AB,∴PA=PB过P分别做PF⊥CB于F,PG⊥AC于G.四边形GPFC为正方形.∠GPF=90°△APG≌△BPF∠APG=∠BPF所以∠APB=90°所以△ABP为等腰直角三角形

三个半圆的面积为S1=4.5π,S2=8π,S3=12.5π,把三个半圆拼成如图3所示的图形,则△ABC一定是直角三角行

(1)设AC=b,S1=(b/2)²π÷2=4.5π,∴b=6,(2)设BC=a,S2=(a/2)²π÷2=8π,∴a=8,(3)设AB=c,S3=(c/2)²π÷2=1

如图,CD,BE是三角形ABC的两条高,求证三角形AED相似于三角形ABC

证明:∵∠CDA=∠BEA=90°∵∠CAD=∠BAE∴△ABE∽△ACD∴AE:AD=AB:AC∴AE:AB=AD:AC又∵∠EAD=∠BAC∴△ADE∽△ACB

如图:三角形ABC中,OA平分角BAC,角1=角2,求证三角形ABC是等腰三角形!

OA平分角BAC,所以角BAO等于角CAO,因为角1等于角2,所以有180度-角BAO-角1=180度-角CAO-角2.即:角BOA=角COA,又因为公用边OA=OA,根据三角形相等规则:两角及其夹边

如图三角形ABC中,AB是AD的5倍,AC是AE的3倍,如果三角形ADE的面积等于1,三角形ABC

3倍和5倍,5×1×3=15,你想想,看边上,望采纳(注意等底等高)

如图,三角形ABC中,角A=36°,角ABC=72° (1)三角形ABC是一个什么三角形,为什么?

要过程吗再问:要再答:因为角A等于36度,角ABC等于72度又因为三角形内角和为180度,所以角c等于72度,所以角ABC等于角C,所以AC等于AB等腰三角形再问:第二题呐?再答:因为AD等于BD.所

如图:三角形ABC是锐角三角形,PA⊥平面ABC

1、在△PBC平面上作PM⊥BC,交BC于M,在△PAM平面上作AG⊥PM,交PM于G,AG就是平面PBC的垂线.证明:∵PA⊥平面ABC,∴PA⊥BC,而BC⊥PM,∴BC⊥平面PAM,而AG在PA

如图,三角形ABC是等腰直角三角形

50平方厘米,利用旋转

求助一道三角函数题,在三角形ABC中,cos²二分之A=2c分之(b+c),则三角形的形状为?(答案是直角三角

方法一:cos²(A/2)=(1+cosA)/2,根据余弦定理有cosA=(b²+c²-a²)/2bc,代人cos²(A/2)=(b+c)/2c,得(

如图,三角形ABC是一个格点三角形,这个三角形是直角三角形吗,为什么?

设小方格长度为1则根据勾股定理AC²=3²+2²=13AB²=4²+6²=52BC²=1²+8²=65而AC&

如图,三角形abc是直角三角形

连AD、EF,可证△ADE≌△CDF,△ADF≌BDE,所以DE=DF,AE=CF=5,AF=BE=12,由勾股定理可得EF=13,DE=DF=6.5乘根号2,S△DEF=169/8.

已知三角形ABC的三个顶点分别为A(1,-2,-3),B(-1,-1,-1),C(0,0,-5),求证△ABC是直角三角

根据空间两点的距离公式,AB的距离等于(x1-x2)^2+(y1-y2)^2+(z1-z2)^2的开方.得出AB=3,BC=3√2,AC=3,由此AB^2+AC^2=BC^2.根据勾股定理,△ABC是

初二数学3道判断题1.在三角形ABC中,a^2+b^2=c^2,则三角形ABC不是直角三角形2.若三角形ABC是直角三角

1.在三角形ABC中,a^2+b^2=c^2,则三角形ABC不是直角三角形(错)2.若三角形ABC是直角三角形,角C=90°,则a^2+b^2=c^2(对)3.在三角形ABC中,若a^2+b^2=c^

费马点的历史背景费马点被发现的历史背景.背景!在特殊三角形中寻找并验证费马点,例如,当三角形ABC是等边,等腰或直角三角

浅谈三角形的费马点法国著名数学家费尔马曾提出关于三角形的一个有趣问题:在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小.人们称这个点为“费马点”.这是一个历史名题,近几年仍有不少文献对此

如图,在三角形ABC中,CD是中线,AC²+BC²=4CD²,求证:三角形ABC是直角三角

延长CD到E使DE=CD,连接AE可用SAS证明三角形AED与三角形BCD全等,即AE=BC∵AC^2+BC^2=4CD^2∴AC²+AE²=(2DC)²∴三角形AEC为