如图1,分别从△abc的三边ab,ac,bc为边向bc的同侧作正方形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:24:41
由题意得,这个小三角形的周长=12×12(a+b+c)=14(a+b+c).
根据a/b=(a+b)/(a+b+c)得a/b=(a+b-a)/(a+b+c-b)所以a/b=b/(a+c)也就是说CB/AC=AC/CD那么三角形ACB和三角形DCA相似所以∠D=∠CAB∠CBA=
证明:∵DE∥BA∴∠EDC=∠B∵DF∥CA∴∠FDB=∠C∴∠FDE=180-(∠EDC+∠FDB)=180-(∠B+∠C)∵∠A+∠B+∠C=180∴∠A=180-(∠B+∠C)∴∠FDE=∠A
因为b²-4b+4可写作(b-2)²,所以根号(a-1)+b²-4b+4=0=根号(a-1)+(b-2)²=0所以根号(a-1)=0,a=1,(b-2)&sup
(1)∵△BDG与四边形ACDG的周长相等,∴BD+BG+DG=AC+CD+DG+AG,∵D是BC的中点,∴BD=CD,∴BG=AC+AG,∵BG+(AC+AG)=AB+AC,∴BG=12(AB+AC
连接DO,FO,在四边形ADEF中,因为AB,AC是⊙O的切线,D,F是切点,所以∠ADO=∠AFO=90°,所以∠A+∠DOF=180°,∠DOF=180°-∠A,所以∠DEC=90°-∠A/2..
连AC′,由△ABC=1,∴△ACC′=4.△A′AC′=5△ACC′=20,2.连BA′由△ABC=1,∴△ABA′=4,△AA′B′=5△ABA′=20.3.由△ABC′=5,∴△BB′C′=4△
证三个小三角形和大的三角形相似,求出相似比为1:2,则面积比为1:4,三个小三角形面积都分别占大三角形面积的1/4,所以中间的三角形也占大三角形的1/4.(比如证△DBF和△ABC相似,然后证另外两个
(1)证明:∵△ABD,△BCE,△ACF都是等边三角形,∴AB=BD=AD,∠ABD=∠EBC=∠BCE=∠ACF=60°,BC=BE=CE,AC=AF=FC.∵∠ABD=∠EBC=60°,∴∠AB
错误的是D,若△DEF的周长为L,则△ABC的周长应该为2L,所以选D!如仍有疑惑,欢迎追问.祝:
∵a−1+b2-4b+4=a−1+(b-2)2=0,∴a-1=0,b-2=0,即a=1,b=2,则第三边c的范围为2-1<c<2+1,即1<c<3.
授人以渔不如教人以鱼,请尊重彼此,及时采纳答案!目不识丁丁在这里祝你学习进步!不知道你们学过中位线没有.这是用中位线做的:(1)因为DE,DF分别是△ABC中的中位线所以DE∥AB,DF∥AC所以四边
我给的是n个的通用公式,你看看,如果想要全部的解题过程请去我截图里面的链接中搜答案,解析过程有点长我截不完,望见谅.
这个就是余弦定理的证明在任意△ABC中做AD⊥BC.∠C所对的边为c,∠B所对的边为b,∠A所对的边为a则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c根据勾股定理可得:
(1)证明:∵△ABC∽△A1B1C1,且相似比为k(k>1),∴aa1=k,a=ka1;又∵c=a1,∴a=kc;(2)取a=8,b=6,c=4,同时取a1=4,b1=3,c1=2;此时aa1=bb
(1)设△ABC的三边长分别为a、b、c;则有:a=3,b=4,c=5;∵a2+b2=32+42=52=c2,∴△ABC是直角三角形,且a、b为直角边,c为斜边;则△ABC的内切圆半径长为:a+b−c
⑴ADFE是平行四边形.理由:∵ΔFBC、ΔACD是等边三角形,∴BC=FB,AC=DC,∠FCB=∠DCA=60°,∴∠FBC-∠ACF=∠DCA-∠ACF,即∠FCB=∠DCA,∴ΔABC≌ΔFC
1.证明:首先角DBA=角EBC=60度,那么同时减去角EBA也相等,那么角DBE=角ABC而BD=ABBE=BC所以三角形DBE全等于三角形ABC所以DE=AC而AC=AF所以DE=AF又叫角ECF
(1)证:Q△ABC∽△A1B1C1,且相似比为k(k>1),a=k,a=ka1.∴a1又Qc=a1,a=kc.取a=8,b=6,c=4,同时取a1=4,b1=3,c1=2.此时abc===2,△AB