如图1,在△ABC中,角B等于60°,AD.CE分别是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:33:52
如图1,在△ABC中,角B等于60°,AD.CE分别是
如图,在三角形ABC中,CD是三角形ABC的角平分线,∠A等于2角B,求证BC等于AC+AD

证明:在BC上截取CE=CA,连接DE,由SAS可判定△ACD≌△ECD,AD=ED∴∠CED=∠A∴∠CED=2∠B∵∠CED=∠B+∠BDE∴2∠B=∠B+∠BDE,∠B=∠BDE∴EB=ED=A

如图,在三角形ABC中,角1等于角2,BD等于CD,求证;AB等于AC

因为BD=CD所以AD是三角形ABC的中线因为∠1=∠2所以AD是三角形ABC的角平分线所以AD是三角形ABC的垂直平分线所以AB=AC再问:怎么证垂直再答:三线合一

如图在三角形abc中角abc等于角c等于角1角A等于角三求角的度数

求图再问:再答:角a等于角3,角三在?再答:把完整题目发来就好了再问:再答:再问:谢谢你再答:采纳为满意答案吧

如图,在三角形abc中,角b等于45度,ab等于根号2,bc等于根号3 加1,则边ac的长为

详细解如图:过C作CD垂直于AB交AB于D:因为角A=45度,CD垂直于AB所以 三角形ACD为等腰直角三角形所以AD=AC除以√2=1=DC所以BD=AB-AD=√3CD=AD=1&nbs

在三角形abc中,角acb等于2倍角b,如图1,当角c等于90度,ad为三角形abc的角平分线时,在ab上截取ae等于a

1、证明:在AB边上取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠BAD=∠CAD∵AE=AC,AD=AD∴△ACD≌△AED(SAS)∴DE=CD,∠AED=∠C∵∠C=2∠B∴∠AED=2∠

如图已知在梯形abc d中ae b平行bc角b等于90度a b等于3 bc等于11 dc等于6.请

做了吗?再问:?再答:设BP=x则cp=11-x分两种情况:(1)x:(11-x)=3:6∴X=11/3(2)x:6=3:(11-x)解得:x=2或x=9综上:BP=11/3或2或9再问:再问:不好意

如图 在直角三角形abc中 角acb等于90度,角b等

应该是顺时针转如图,ABC为30-60-90度直角三角形,AB=2BC=8,AO=2根号(3)1.当<AOD=30度时,AOD为等腰三角形,<BDE=2<A=60=<B,所以B

如图2,在三角形ABC中,BC等于a,AC等于b,角BCA等阿尔法,根据所给的条件,求三角形ABC的面积.

最简单的解法就是用这个公式三角形面积S=1/2absinC∴S△ABC=1/2absinα

如图,在三角形ABC中,角b等于角c

证明:过A作AD垂直BC于D,在三角形ABD与三角形ACD中,角B=角C,角ADB=角ADC=90度,AD=AD,所以三角形ABD全等于三角形ACD所以AB=AC

如图,在三角形abc中,角b等于76度,角c等于36度,

利用三角形的内角和可以求出:∠BAC=180°-∠B-∠C=180°-76°-36°=68°希望我的回答能帮助你,在我回答的右上角点击【采纳答案】,

如图,在三角形abc中角A等于角B,角1等于角2,角BAD等于40度,求角EAD的度数

解法1:    ∵ ∠B=∠C    ∠BAD=∠ADC-∠B    

如图,在三角形ABC中,已知角α等于角B,AC等于6,BD等于5,求AB

角α等于角B角A=角A则三角形CAD相似于三角形BAC则有CA:AB=AD:ACAC*AC=AB*AD=AB*(AB-BD)AB*AB-AB*BD=AC*ACAB^2-5AB-36=0(AB-9)(A

如图,在角abc中角a等于60角b;角c等1;5求角b的度数

角a等于60,所以角b+角c=120,角b:角c=1:5,所以角b=120/(1+5)=20度

如图在三角形abc中角b等于60度角c等于30度……

十五度再问:过程(^ω^)再答:一个三十度一个六十度所以另一个是直角,又因为角平分线线,所以,直角被分成两个四十五度,对吧再答:因为ad是高再答:所以bad就等于180减90减60等于30再答:所以d

如图1,等腰直角三角形ABC中,角ABC等于90度,点A,B坐标轴上.

由题意设AB=BC=a,则AC=√2*a又MA(即x轴)平分∠BAC则BM/MC=AB/AC=√2/2即MC=√2*BM因为BC=BM+MC=a,所以:BM+√2*BM=a解得BM=(√2-1)a,M

如图,在Rt三角形ABC中,角B等于90°,BC大于AB.

BD=DE;理由:过P作PF⊥BD于F,四边形DFPE为矩形,PF=DE,∵∠ABD+∠DBC=90°,∠A+∠ABD=90°,∴∠A=∠DBC.在△ABD和△BPF中,{∠ADB=∠BFPAB=BP