如图1,已知抛物线y=ax² bx c经(0,3)(3,0)(4,3)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:30:36
如图,已知抛物线y=ax^2+bx+c交x轴与A、B两点,交y轴与点C(0,8)若抛物线的对称轴为直线x=-1,且△ABC的面积为40,在直线BC上,是否存在这样的点Q,使得点Q到直线AC的距离为5求
数理答疑团为您解答,希望对你有所帮助.如图在平面直角坐标系中,已知抛物线y=ax^2+bx-4经过A(-2,0)、B(4,0)交y轴于点C.(1)求抛物线的解析式抛物线y=ax^2+bx-4经过A(-
(1)对称轴是直线x=1,点A的坐标是(3,0).(2)①如图1,连接AC、AD、CD,过点D作DM⊥y轴于M.方法一:∵A(3,0),C(0,-b),D(1,-a-b).∴OA=3,OC=b,MC=
我做了.不知道对否啊.凑合点吧.y=ax平方+bx+3与x轴交于点A(1,0)B(-3,0)将x=1和x-3分别带入得关于a,b二元一次次程a+b+3=09a3b+3=0解得:a=-1,b=-2带入原
把点B(0,-1)代入y=ax2+bx+c中得:c=-1,∴b=4a因为顶点A在x轴上,所以△=0,即b²-4ac=0b²+4a=0b=4ab²+b=0b1=0,b2=-
抛物线过A、O,设解析式:Y=aX(X+2),又过(1,-√3),∴-√3=2a,a=-√3/2,∴Y=-√3/2(X²+2X)=-√3/2X²-√3X,Y=-√3/2(X
(1)y=1/2x^2-3/2x-2(2)k=-3/2(3)看不清楚呀
(2)②先求出顶点(2,-10),然后设(2-a,-10+√3a)代入解析式解方程即可(3)设抛物线Y=a(X-m)²+n当a<0时又∵C(m-b,n-√3b)代入自己解得一个答案当a>0时
1)因为过原点,所以C=0,又因为过A(1,-3),B(-1,5),得出解析式y=x^2-4x2)C点坐标(4,0),所以⊙M半径为2,因为MD^2+ED^2=OM^2+OE^2,所以ED=OE,四边
∵点A关于点B对称∴对称轴:直线x=-1∴点C(0,3)关于(-2,3)∴把点B,C和(-2,3)带入解析式中得:{C=3a+b+c=04a-2b+c=3}解得:{a=-1b=-2c=3}∴y=-x&
因为抛物线的顶点在x轴上,所以b^2-4ac=0,所以ac=b^2/4,代入b+ac=3,解得b=2(b=-6不合题意舍去); 因为ac=1,c
1、抛物线的解析式为y=-3/8x²+3/4x+3对称轴为x=12、A点关于x=1的对称点为D(-2,0),直线BD的方程为3x-4y+6=0,它交直线x=1于M(1,9/4),此点为所求
答:抛物线方程y=-ax^2+3ax+2=-a(x-3/2)^2+2+9a/4所以抛物线对称轴x=3/2,故点C一定在对称轴的右侧.令x=0,y=2,所以点A(0,2)令y=-ax^2+3ax+2=0
第一题为2013雅安中考题:分析:(1)根据函数图象经过的三点,用待定系数法确定二次函数的解析式即可;(2)根据BC是定值,得到当PB+PC最小时,△PBC的周长最小,根据点的坐标求得相应线段的长即可
⑴抛物线经过A、B、C得方程组:c=-3,a-b+c=09a+3b+c=0解得:a=1,b=-2,c=-3,∴抛物线的解析式为:Y=X^2-2X-3.⑵直线BC的解析式为:Y=X-3,过P作BC的平行
(1)过C(0,3),c=3与x轴交于(-1,0),(3,0),可表达为y=a(x+1)(x-3)其常数项为-3a=c=3,a=-1y=-(x+1)(x-3)=-x²+2x+3(2)根据图,
与x轴交于点A(1,0)和点B(-3,0)则y=a(x-1)(x+3)=ax²+2ax-3a=ax²+bx+3所以2a=b,-3a=3所以a=-1b=2a=-2
(1)令y=0,得-x2+x+4=0,即x2-2x-8=0;解得x=-2,x=4;所以A(4,0);令x=0,得y=4,所以B(0,4);设直线AB的解析式为y=kx+b,则有:4k+b=0,b=4解
已知抛物y=ax²+k经过点A(-1,0),M(0,1)及x轴上另一点B,直线L平行于x轴且与抛物线交于C,D两点,连接AD,BC,若C点横坐标是1/2,求梯形ABCD的面积.将M的坐标代入