如图11,AD是△ABC的角平分线,BD=DC,DE垂直AB,DF⊥AC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 11:51:50
如图11,AD是△ABC的角平分线,BD=DC,DE垂直AB,DF⊥AC
如图,AD是三角形ABC的中线,求证

证明:∵三角形任意两边之和大于第三边∴AD+BD>AB,AD+DC>AC两式相加得:2AD+BD+DC>AB+AC∵D是BC中点∴2BD=BD+DC∴2AD+2BD>AB+AC∴AD+BD>二分之一(

如图,已知AD是△ABC的中线

果然是缺了BC的长度这个条件啊.过D向BE做高由于翻折,易得角CDE=角BDE=90度,且DE=DC.又DC=BD,因此DE=BD,即三角形BDE是等腰RT三角形.由此易得BE平行于AD,所以四边形B

如图,AD是△ABC的角平分线,AD的垂直平分线交BC的延长线于点F.

证明:∵EF是AD的垂直平分线,∴AF=DF,∴∠FAD=∠FDA,∵∠FAD=∠FAC+∠CAD,∠FDA=∠B+∠BAD,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠FAC=∠B.

如图,AD是△ABC的中线,CE⊥AD于E,BF⊥AD,交AD的延长线于F.求证:CE=BF.

证明:∵AD是△ABC中BC边上的中线,∴BD=CD.∵CE⊥AD于E,BF⊥AD,∴∠BFD=∠CED.在△BFD和△CED中∠F=∠CED∠BDF=∠CDEBD=CD,∴△BFD≌△CED(AAS

如图,AD是△ABC的角平分线,证明:AB/AC=BD/CD

作CE平行AB,E在AD延长线上由相似关系之AB/CE=BD/CDAD是△ABC的角平分线故角BAD=角DAC=角E,AC=ECAB/AC=BD/CD

如图,已知AD是△ABC的中线.

1.延长AD至点A',使AD=A'D,连接A'B,A'C,则△A'BC即与△ABC成中心2.A'B=AC=4cm ,AB=6cm ,

如图,△ABC中,P是角平分线AD,BE的交点.

证明:如图,过点P作PM⊥AB,PN⊥BC,PQ⊥AC,垂足分别为M、N、Q,∵P在∠BAC的平分线AD上,∴PM=PQ,P在∠ABC的平分线BE上,∴PM=PN,∴PQ=PN,∴点P在∠C的平分线.

如图,在△ABC中,AD是BC边上的中线,求证:2AD

以AB,AC为边做平行四边形ABCE由于AD是BC边上的中线,所以延长AD一定交与点E在三角形ACE中,有AE

如图,AD、BE是△ABC的两条高.

(1)证明:∵AD,BE是△ABC的两条高∴∠ADC=∠BEC=90°,又∵∠C=∠C∴△ACD∽△BCE∴CECD=CBCA,即CE•CA=CD•CB;(2)∵CECD=CBCA,∴CECB=CDA

已知:如图,AD,BE,CF是等边三角形ABC的角平分线.求证:△DEF是等边三角形.

∵△ABC为等边三角形,且AD=BE=CF∴AF=BD=CE,又∵∠A=∠B=∠C=60°,∴△ADF≌△BED≌△CFE(SAS),∴DF=ED=EF,∴△DEF是一个等边三角形.再问:可以再具体些

如图,BE是△ABC的角平分线,AD是△ABC的高,∠ABC=60°,则∠AOE=______.

∵BE是△ABC的角平分线,∠ABC=60°,∴∠DOB=12∠ABC=12×60°=30°,∵AD是△ABC的高,∴∠ADC=90°,∵∠ADC是△OBD的外角,∴∠BOD=∠ADC-∠OBD=90

如图,在△ABC中,AD是角平分线,E是AD上的一点,且CE=CD,

证明:(1)∵AD是角平分线,∴∠BAD=∠DAC,∵CD=EC,∴∠CDE=∠CED,∴∠B+∠BAD=∠ACE+∠CAE,∴∠B=∠ACE;(2)∵∠B=∠ACE,∠BAD=∠DAC,∴△ABD∽

如图 在△ABC中,∠C=2∠B ,AD是△ABC的角平分线.

延长AC到E使得CE=CD,连接DE,用三角形全等

如图,△ABC中,AB=AC,AD是角EAC的平分线.求证:AD‖BC

∵AB=AC∴∠B=∠C∵AD是角EAC的平分线∴∠1=∠2∵∠1+∠2=∠B+∠C∴∠2=∠C∴AD‖BC

如图 已知AD是三角形ABC的角平分线( 角ABC大于角B)

【题目】如图,已知AD是△ABC的角平分线(∠ACB>∠B),EF⊥AD于P,交BC延长线于M,(1)如果∠ACB=90°,求证:∠M=∠1;(2)求证:∠M=1/2(∠ACB-∠B)【分析】(1)先

如图,△ABC中,AD是它的角平分线,求证S△ABC:△ACD=AB:CD

题错了,作不出来的.ThyFhw先生作了,也是和题不符合的呀.对不上号啊.

已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线

因为∠B=30°,∠C=50°所以∠BAC=180°-∠B-∠C=100°因为AD,AE分别是△ABC的高和角平分线所以∠DAC=180°-90°-∠C=40°∠EAC=∠BAC/2=100°/2=5

如图 AD是△ABC的中线,BE⊥AD,交AD延长线于点E,CF⊥AD于点F,求证BE=CF

证:∵BE⊥AD,CF⊥AD∴BE//CF∴∠DCF=∠DBE又∵∠CDF=∠BDE,BD=CD∴△CDF≌△BDE(两角夹边)∴BE=CF.证毕.