如图14,圆o中,直径CD垂直于弦AB于E,AM垂直于BC于M
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 21:05:05
1,∵E是弧ADB的中点,AB是圆O的直径∴OE⊥AB∴DC∥OE∴∠OEC=∠ECD∵△OEC是等腰三角形∴∠OEC=∠OCE∴∠OCE=∠ECD∴CE平分∠OCD2,∵∠BAC=∠HCB=30,∠
一:①:BC=BD②:BC=根号(AB平方-AC平方)③:BC=根号(CE平方+BE平方)二连结CO∵∠D=30°又∵∠COB与∠D同弧∴∠COB=2∠D=30º×2=60º∴∠C
证:设M为CD中点连接OM,则OM垂直于CD(垂弦定理)又因为CE垂直于CD,DF垂直于CD所以CE平行于OM平行于DF(在同一平面内,垂直于同一直线的两条直线相互平行)又因为M为CD中点(已设)所以
很简单呐解:因为AB为直径且垂直CD所以CP=PD因为角APD=角CPB角B=角D所以三角形APD相似于三角形CPB所以AP比CP=DP比BP所以CP·PD=AP·BP即PC^2=PA*PB
证明:连接AC、BC则∠ACB=90°∵CP⊥AB∴弧BC=弧BD∴∠A=∠BCP∵∠CPB=∠CPA=90°∴△ACP∽△CBP∴CP/AP=BP.CP∴CP²=AP*PB
证明:∵AB是直径∴∠ACB=90°∴∠BAC+∠ABC=90°∵CD⊥AB∴∠BCD+∠ABC=90°∴∠BAC=∠BCD∵BC=CF∴∠BAC=∠CBF(等弦对等角)∴∠BCD=∠CBF∴BE=E
连接AC∵AB是直径AB⊥CD∴AC=AD∴∠ACD=∠ADC∵∠AFC=∠ADC∠ACD=∠DFE∴:∠AFC=∠DFE
联接BD,因为CD为直径,点b为圆上一点,所以DB垂直于BC,又因为AM垂直于BC,所以AM平行于BD,所以角MAB=角DBA,因为CD垂直于弦AB,所以AE=BE,又角AEC=角DEB(对顶角相等)
三角形OAB为等腰直角三角形,斜边5倍根号2,则圆的半径为5,角AOE=角OBF,则直角三角形AOE全等于OBF,OE=BF,AE=OFCE+AE+BF+DF=CE+OE+OF+DF=CD=圆直径=1
(1)证明:连接FA.∵AB为圆O直径,所以∠AFB=90°,∴∠AFD+∠DFB=90°,∠CFA+∠BFE=90°.∵弦CD与直径AB垂直于H,∴由垂径定理,得弧CA=弧DA,∴∠CFA=DFA.
连结cb因为bf平行于cd且ab垂直于cd所以cb=df所以弧cb=弧df因为cd是直径且垂直ab故c点评分弧ab所以弧ab=2弧cb=2弧df
证明:在三角形ABC中,AB是直径,C是圆上的点所以角ACB=90,即BC垂直于ACOF垂直AC所以OF平行BC∵AB⊥CD∴CE=1/2CD=5√3cm.在直角△OCE中,OC=OB=x+5(cm)
(连接DE)记DE与⊙O的交点为G,∵DF=EF,∴∠FDE=∠FED,∠CFD=∠FDE+∠FED=2∠FDE,∵CD⊥AB,AB是直径,∴弧AC=弧AD,连接AF,则∠CFA=∠AFD,∠CFD=
(1)∵OA过圆心且CD⊥AB∴弧AC=弧AD∴∠F=∠ACD又∵∠CAF=∠CAF∴△ACH∽△AFC(2)连接BC∵AD为直径∴∠ACB=90°又∵CE⊥AB∴AE×AB=AC²∵△AC
连接BD,则角ADB=90度角ABD=角ADC=角D(同为BDC的余角)在Rt△ADB中,sinABD=AD/AB=2*5(1/2)/5cosABD=(1-cos^2ABD)^(1/2)cosABD=
做辅助线,连接OA=OB=OC=OD,因为AB大于CD,所以角OAB和角OBA小于角OCD和角ODC,所以OE小于OF.
因为AD垂直CD所以角ADC=90度即角DAC+角DCA=90度1式连接OC因为OA=OC所以角CAO=角ACO2式因为AC平分角BAD所以角DAC=角CAB3式由1式2式3式可得角DCA+角ACB=
①OE=OF,因为OA=OB=OD=OC且∠AOB=∠COD所以△AOB与△DOC全等垂线也相等②AB=CD弧AB=弧CD∠AOB=∠COD,因为圆中任意与圆点距离相等的弦的长度都相等,弦相等弧一定相