如图18所示,三角形ABC内接于圆O,AB是圆O的直径

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:08:48
如图18所示,三角形ABC内接于圆O,AB是圆O的直径
如图4所示,已知D是三角形ABC内的一点,连结DB、DC,试探究BA+AC与DB+DC的大小关系.

证明:过D作直线交AB、AC于E、F,;根据三角形任意两边的和大于第三边有;BD

如图在三角形ABC中AB=BC=2角B=45度四边形DEFG是三角形ABC的内接正方形

A在BC边上的高为AB*sinB=根号2定义为h设正方形边长为a则由于FG平行于CB有△AGF相似于△ABC相似比为高的比即为(h-a):h也为GF:BC=a:2从而有(根号2-a):(根号2)=a:

如图,在三角形ABC中,AC=BC>AB,点P为三角形ABC所在平面内一点,且点P与三角形ABC的

选C如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,

如图,三角形ABC内接于圆O

关于如图,三角形ABC内接于圆O

如图,已知三角形ABC内接于⊙O,角C=45°,弦AB的弦心距OD=2求弦AB把⊙O所分成两条弧的长

我没看到你上传的图,我根据题意大致画了一示意图,你看下.如图<ACB=45°(圆周角),则其对应的圆心角为90°,也就是<AOB=2X<ACB=45°=90°;  

三角形ABC平移后得到如图 所示位置的三角形A1B1C1,……

如果我没看错应该是A1(2,4),B1(-3,0),C1(4,-1)就以点A为例x+3=2,x=-1,y-4=4,y=8,那么A的坐标就是(-1,8)同理B坐标为(-6,4),C坐标为(1,3).至于

如下图所示,三角形内接于圆o的直径,cd是三角形abc中ab边上的高,求证

估计同学将题目抄写错了.是不是如下问题: 三角形内接于圆O,CE是圆O的直径,CD是三角形ABC中AB边上的高.求证:AC*BC=CE*CD (或求证:AC*BD=AE*CD)&n

如图,三角形ABC的每边长都是48cm,由图中所示的线段把这个三角形分割成面积相等的四个三角形,

再问:答案是对的,可是不是很明白。能把过程和解释写一下吗?我会加分的。再答:

如下图所示,三角形ABC是等腰直角三角形,BC是斜边,点P是三角形ABC内一点,将三角形ABP绕点A逆时针旋转%

将△ABP绕点A逆时针旋转后,与△ACP'重合后,AB与AC重合.此时,AP’=AP=5.∵∠PAB=∠P'AC,∴∠P'AP为直角.∴△P'AP为直角等腰三角形,∴PP’=5√2.

​如图,已知△ABC是⊙O的内接三角形,AB=AC,D是圆上任意

射线是角平分线再问:图1,为什么是连接DA再答:因为弧AB和弧AC相等,所以所应角相等

如图,△ABC是大圆的内接三角形也是同心小圆的外切三角形

因为两圆同心,所以三角形ABC是等边三角形,则AB=4cm.连接OD,则OD丄AB,而AB是大圆的弦,所以D是AB的中点,则AD=AE=DE=2,因此,小圆半径OD=√3/3*AD=2√3/3cm,三

如图已知,三角形ABC内接于圆o,弦BC所对的劣弧为120度角ABC,角ACB的平分线BD,CE分别交AC于D交AB于E

∵劣弧BC的度数为120°∴∠BAC=60°∴∠ABC+∠ACB=120°∵BD平分∠ABC,CE平分∠ACB∴∠CBD+∠ECB=12(∠ABC+∠ACB)=60°∴∠CFD=60°∴∠BFE=60

如图,三角形ABC内接于○O,AB=AC,AO⊥BC于D,

连接AO并延长与圆交与M,连接BM则△ABM相似△ADCAB:DA=AM:ACAB×AC=AM×AD=10×2=20

如图,三角形ABC内接于圆O,点D是弧BC的中点,AE是三角形ABC的高求怔:AD平分角OAE

连接OD,因为D是弧BC的中点,所以OD垂直于BC,又因为AE垂直于BC,所以OD平行于AE,所以∠ODA=∠DAE因为OD=OA,所以∠ODA=∠OAD所以∠OAD=∠DAE所以AD平分角OAE

如图1-3-7所示,在三角形ABC中,角ACB=90°,

因为∠ACB=90°所以∠A+∠B=90°因为∠AFE=∠B所以∠A+∠AFE=90°所以∠AEF=90°因为CD垂直AB所以∠ADC=90°所以∠AEF=∠ADC所以EF∥CD

如图6所示在三角形ABC中AB等于AC中线BD吧三角形ABC的周长分为15和18两部分求三角形ABC各边的长

没有图哟,我是高三毕业生,哈哈再问:再答:设AB=AC=x,BC=y则依据条件可得2x+y=15+18=33,即总周长,又因为三角形ABD和三角形BDC周长之差为3,可得IAB-BCI=3,即Ix-y