如图2,若CP分别是角ABC与角ACB的外角平分线,交于点P

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 13:50:49
如图2,若CP分别是角ABC与角ACB的外角平分线,交于点P
如图:已知 BP,CP 分别是△ABC 的∠ABC,∠ACB 的外角角平分线,BP,CP 相交 于 P,试探索∠BPC

因为,∠BCE=∠A+∠ABC,∠CBD=∠A+∠ACB所以,∠2=1/2*(∠A+∠ABC),∠1=1/2*(∠A+∠ACB)所以,∠BPC=180-(∠1+∠2)=180-1/2*(∠A+∠ACB

如图,在△ABC中,①P是△ABC内任意一点,∠BPC与∠A有怎样的大小关系?如果BP,CP分别

∠BPC>∠A证:连接AD,并延长AD交BC与E∵三角形ADC中,∠EDC是外角∴∠EDC>∠DAC(三角形的一个外角大于不相邻的任意一个内角)∵三角形ADB中,∠EDB是外角∴∠EDB>∠DAB(三

如图,已知三角形ABC是等边三角形,点P是三角形ABC中的任意一点,分别连接AP,BP,CP,且AP=3,BP=4,CP

以PA为边长作等边△PAD,连结BD∵∠PAD=60°=∠BAC∴∠BAD=∠PAC∵AD=AP,AB=AC∴△ABD≌△APC∴BD=PC=5∵PD=PA=3,PB=4∴∠BPD=90°∵∠APD=

已知,如图∠ACE是三角形ABC的外角,∠ABC与∠ACE的角平分线BP、CP交P

证明:∵∠ACE是三角形ABC的外角∴∠ACE=∠A+∠ABC又∵BP和CP是∠ABC与∠ACE的角平分线∴∠ABP=∠2,∠ACP=∠PCE根据题意可知∠PCE=∠2+∠P∴∠ACE=∠A+∠ABC

如图:已知BP、CP分别是△ABC的∠ACB的外角角平分线,BP、CP相交于O,试探所∠BPC与∠A之间的数量关系.

∵∠1=0.5∠DBC=0.5(180°-∠ABC),∠2=0.5∠ECB=0.5(180°-∠ACB)∴∠BPC=180°-(∠1+∠2)=180°-【0.5(180°-∠ABC)+0.5(180°

如图,在三角形ABC中,BD、CD是内角开分线,BP、CP分别是角ABC和角ACB的外角平分线,

根据内角平分线可推得∠BDC=90°+1/2∠A当∠A=30°时∠BDC=90°+15°=105°根据内外角平分线可推得∠BDC=90°+1/2∠A∠BPC=90°-1/2∠A两式相加得∠BDC+∠B

1.(1)如图1,在△ABC中,BP、CP分别是△ABC的外角∠DBC和∠ECB的角平分线,试探究∠BPC与∠A的关系.

设AB延长线上有一点E,AC延长线上有一点F,则有:∠A+∠ABC+∠ACB=180∠A=180-(∠ABC+∠ACB)=180-(360-∠CBE-∠BCF)又∠P=180-1/2(∠CBE+∠BC

如图,在△ABC中,AC=BC=3,AB=3倍的根2,P是AB边上的一点,BD⊥CP,AE⊥CP,垂足分别为D、E,且A

易知∠ACE+∠BCD=∠ACE+∠CAE=90°∴∠BCD=∠CAE又∠AEC=∠BDC=90°AC=BC∴△ACE≌△CDB在△ACE中,依勾股定理易知CE=根号五∴BD=CE=根号五得证

如图,bp,cp分别是角abc,角acd的平分线,角p=27度,那角a=

角的负号不写了A+ABP=P+ACPA=P+ACP-ABPA=P+(1/2)(ACD-ABC)A=P+(1/2)A1/2A=PA=54度

如图,BP ,CP分别平分∠ABC和∠ACD,且BP与CP相交于点P.

设∠ABP=∠CBP=∠1,∠ACP=∠BCP=∠2,由△ABC:∠A=180°-2∠1-2∠2(1)由△PBC:∠BPC=∠P=180-∠1-∠2(2)(2)×2-(1)得:2∠P-∠A=180°∴

已知:如图,BP,CP分别是三角形ABC的外角

过点P作PM⊥AB的延长线,垂足为M,PQ⊥BC,垂足为QPN⊥AC的延长线,垂足为N∵∠MBP=∠QBP,∠PCQ=∠PCN∴PM=PQ,PQ=PN∴PM=PN∴AP平分∠BAC

如图,三角形ABC.BP,CP是三角形ABC的外角平分线,求角A与角P的关系

相等再答:没让写证明就别写再问:让写证明了。。。再答:设角A为x度或直接使用。我没空呃作业还有不少。。。

如图,M,P分别是△ABC的边AB,AC上的点,AM=BM,AP=2CP,BP与CM交于N.求证:BN=3NP.

证明:取AP的中点D,连DM,AM=BM,AD=DP在△ABP中,MD是△ABP的中位线,所以DM=BP/2,MD‖BP又AP=2CP,AP=2DPDP=PC所以在△CMD中,PN是△CMD的中位线,

如图,在三角形ABC中,BD、CD分别是角ABC、角ACB的平分线,BP、CP分别是角EBC、角FC

E,F是什么东东?再问:再答:俩问的结果都是180°哈以为∠PBD=∠PBC+∠DBC=1/2∠EBC+1/2∠ABC=1/2(∠EBC+∠ABC)=90°同理∠PCD=∠PBC+∠DBC=90°所以

如图,CP、BP分别是三角形ABC的外角平分线,那么AP是否是角CAB的平分线呢?若是,请说明理由.

证明:需要做辅助线,三条垂线,第一,过P向AC作垂线垂足为D,过P向AB坐垂线垂足为E,过P向BC做垂线垂足为F.之后根据外角平分线,角ECP和角BCP相等,加上直角和公共边,便可说明三角形ECP和F

如图:已知BP、CP分别是△ABC的外角角平分线,BP、CP相交于点P,试探索∠BPC与∠A之间的数量关系.

∠BPC=90-∠A/2∵∠DBC=180-∠ABC,BP平分∠CBD∴∠PBC=∠CBD/2=(180-∠ABC)/2=90-∠ABC/2∵∠BCE=180-∠ACB,CP平分∠BCE∴∠PCB=∠