如图2,菱形纸片ABCD中,角A=120度.要将其裁剪成尽可能大的扇形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:18:34
如图2,菱形纸片ABCD中,角A=120度.要将其裁剪成尽可能大的扇形
如图,在菱形ABCD中,角A=60度,对角线BD=4cm,求菱形的周长

设菱形的对角线AC、BD相交于O点则OB=BD/2=2cm,AC平分角A,则角OAB=30度,且BO垂直于OA所以:AB=2OB=2*2=4cm所以,菱形的周长=4AB=4*4cm=16cm

如图,已知在菱形ABCD中.详见补充,

因为菱形ABCD所以AC,BD互相垂直平分且平分一组对角又ON⊥AD,OM⊥BC,OE⊥AB,OF⊥DC所以ON=OM=OE=OF(角平分线性质定理)

如图,边长为2的菱形ABCD中

DE+DF=2连接AC、BD因为在菱形ABCD中,角ABD=角EBF=60度,角BAE=角BDF=60度,AB=DB所以角ABD-角EBD=角EBF-角EBD即:角ABE=角DBF所以在三角形ABE和

两个完全相同的矩形纸片ABCD、BFDE如图放置,AB=BF,求证:四边形BNDM为菱形

∵四边形ABCD,四边形BFDE为矩形∴∠A=∠F=90°,∠FBE=∠ABC=90°∴∠FBN+∠NBM=∠ABM+∠NBM∴∠FBN=∠ABM∵{∠A=∠F{AB=BF{∠FBN=∠ABM∴△AB

已知:如图,在菱形ABCD中,角BAD=2角B.求证:△ABC是等边三角形.

在菱形ABCD中AB=BC,AD∥BC∴∠BAD+∠B=180°∵∠BAD=2∠B∴∠B=180°÷(1+2)=60°∴△ABC是等边三角形

如图,在菱形abcd中,ab=2,角dab=60度,

NM垂直ADAM=2再问:能具体点吗?再答:菱形两条对边垂直角dab=60度AM=2AE=AB

如图,菱形ABCD中,周长为16cm,角ABC=60度

菱形的四边相等所以菱形的边长=16/4=4cm因为∠ABC=60°所以对边的距离=4×Sin60°=2√3cm再问:sin在这里什么意思,没学过再答:Sin没学过那应该知道一个角是60度,一个角是30

如图,菱形ABCD中,角BAD=60°,BD/AC是多少

在两对角线把菱形分成的四个小直角三角形中,短直角边是边长的1/2长直角边是边长的√3/2即BD/AC=1/2÷√3/2=1/√3=√3:3再问:你确定??????谢谢啦、、、你QQ多少啊、、这么天才的

如图4-27,菱形纸片ABCD中,角A=60度,将纸片折叠,点A.D分别落在A‘、D’处,且A‘D’经过B,EF为折痕,

解题思路:题目给定的图形,形状已经确定了,那么整个图形中关于线段的长度比值和角的任何问题都能解决.图形大小没确定没关系,设菱形边长为a,最后求这图中两个线段的比值时,a会约掉的.看着图形,思路沿着点A

如图 在菱形纸片ABCD中,AC=6,BD=8,CE是菱形ab边上的高,求CE的.

作AC⊥BD于F点因为∠CEA=∠AFB∠CAE=∠BAF所以△ACE∽△AFB(两角相等成相似三角形)所以AC/AB=CE/BFCE=ACxBF/AB=6x4/5=24/5=4.8

如图 在菱形纸片ABCD中,AC=6,BD=8,CE是菱形ab边上的高,求CE的长 .

AB=√﹙3²+4²)=5菱形ab边上的高ce的长=﹙6×8÷2﹚÷5=4.8㎝

将两张宽度相等的矩形纸片叠放在一起得到如图9所示的四边形ABCD.(1)求证:四边形ABCD是菱形; (2)如

这还问啊?∵它是矩形卡片∴AB∥CDBC∥AD∴四边形ABCD是平行四边形又∵四边形ABCD是由两个全等三角形折叠而得∴DC=AD∴四边形ABCD是菱形(一组邻边相等的平行四边形是菱形)第2问是什么啊

如图,将矩形纸片ABCD折叠,使点C与点A重合,试说明四边形AECF是菱形

∵折叠∴EF垂直平分AC∴AO=CO易证△AOE≌△COF∴OE=OF∴四边形AECF是平行四边形∵AC⊥EF∴四边形AECF是菱形

如图,菱形纸片ABCD中,角A=60°,将纸片折叠,点A,D分别落在A' D'处,且A' D'经过B EF为折痕,当D'

设BC交FD'于点G.在△FCG中,∠GFC=90°,∠C=60°,故∠FGC=30°,在△BD'G中,∠BGD'=∠FGC=30°,而∠GD'B=∠D=180°-60°=120°,故∠GBD'=18

两个完全相同的矩形纸片ABCD、BFDE如图放置,AB=BF.求证:四边形BNDM为菱形

先证四边形BNDM为平行四边形(BM平行DN,DM平行BN)再证三角形ABM全等于三角形FBN(AB=BF,角A等于角F等于90°,角FBM+NBM=90°角ABM+NBM=90°∴角FBM=ABM即

如图,在菱形ABCD中.

AD//BE,所以△AMD∽△EMB,从而BM/DM=BE/DA;而∠BAF=∠DAE,有公共角∠EAF,所以∠BAE=∠DAF,又∠ABE=∠ADF,AB=AD,所以△ABE≌△ADF,所以BE=D