如图2-17,圆外一点p,pa,pb分别切圆o于a
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:34:39
辅助线已作如图先证三角形ABP相似于三角形CAP:公共角P角ABP=角CAB+角ACB角CAP=角OAP+角CAO且三角形OAC等腰,从而角ACB=角CAO因为角CAB=角OAP=90°所以三角形AB
(1)在直角三角形AOD,COD中; 根据直角斜边(HL)证全等; OC=OA, OD=OD;三角
连接OA,OC,OE.∵A和E均为切点.∴∠OAC=∠OEC=90°;又OA=OE,OC=OC.∴Rt⊿OAC≌Rt⊿OEC(HL),AC=EC.同理可证:BD=ED,PA=PB.∴PC+CD+PD=
连结OA、OC,作OE⊥PA于E,OF⊥PB于F,由△OPE≌△OPF得PE=PF,OE=OF,由△OAE≌△OCF得AE=CF,∴PA=PC
证明:连接AC,BD相交于点O,连接PO∵∠BPD=90°∴PO=BO=DO∵四边形ABCD是矩形∴AO=CO=BO∴PO=AO=CO∴∠APC=90°即AP⊥CP
连结AC,BD相交于点O.再连结PO.因为PD垂直PB,故PO=OD=OB.又因为OC=OA=OB;则PO=OC=OA;所以PA垂直PC.
过C点.O点做辅助线CO,过O点做垂线,垂直PA交PA于D.由题意知,角PAB为直角.PB=2PA,所以角ABP等于30度.因圆心角是圆周角的2倍,所以角POA等于60度.在三角形PBA中,PB=4,
PA+PB>AB;(三角形任意两边之和大于第三边)PA+PC>AC;(三角形任意两边之和大于第三边)PB+PC>BC;(三角形任意两边之和大于第三边)以上三个式子相加2PA+2PB+2PC>AB+AC
由AP·PB,联想到相交弦定理,于是延长CP交⊙O于D,于是有PC·PD=PA·PB.又根据条件OP⊥PC.易证得PC=PD问题得证.
延长PO交圆于D∴BD是圆直径∴PD=PB+BD=1+2OB∵PA是圆O的切线∴切割线定理PA²=PB×PD2²=(1+2OB)×1OB=3/2
∵C、A是圆O的切点∴PA=PC同理,EC=EB∴△PDE的周长等于PA+PB,即8
PA切圆O于A,BA⊥PA,∠BAP=90°,PA=2cm,PB=4cm;PA=PB/2,则∠B=30°;AB²=PB²-PA²=4²-2²=12AB
证明:作OE⊥AB于E,OF⊥CD于F.则AE=BE;CF=DF.∵AB=CD.∴OE=OF;AE=CF.连接PO,则PO=PO,Rt⊿PEO≌RtΔPFO(HL),得PE=PF.故:PE+AE=PF
过点O作OE⊥AB于点E,OF⊥CD于点F∵弦AB=CD∴OE=OF,∠PEO=∠PFO=90°∵OP=OP∴RT△POE≌RT△POF(HL)∴∠BPO=∠DPO,PE=PF∴PO平分∠BPD2.连
∵PA、PB是⊙O的切线,切点分别是A、B,∴PA=PB=12,∵过Q点作⊙O的切线,交PA、PB于E、F点,∴EB=EQ,FQ=FA,∴△PEF的周长是:PE+EF+PF=PE+EQ+FQ+PF,=
如图,连接OA,OB,OF∵PA,PB是⊙O的切线 ∴OA⊥PA,OB⊥PB,在四边形PAOB中,∠AOB=360°-40°-90°-90°=140°易证:△AOD≌△FOD(SAS)&nb
PA=PD>>>PB=PC角BPC=30度>>>角PBC=75度,BC*tan75度/2-AB=AD*tan角PAD/2,正方形ABCD>>>tan角PAD=tan75度-2=√3>>>角PAD=60
反证法过B作AP垂线BO,过c作AP垂线cO',O,O'均在AP上假设O,与O'不重合则有,在三角形ABP中,BO是AP边的高,AB=BP,所以,AO=PO同理,三角形cBP中,有AO'=PO'所以,
证明:过P作PO⊥平面ABC,垂足为O所以PA在平面ABC的射影是AO,又PA⊥BC,根据三垂线定理的逆定理知,(在平面内的一条直线,如果它和这个平面的一条斜线垂直,那么它也和这条斜线在平面内的射影垂
(1)取CD中点G,连接EG、FG,容易得到FG∥面PAD,EG∥面PAD,所以面EFG∥面PAD,所以EF∥面PAD;(2)G是CD中点,F也是PC中点,容易得到FG⊥CD,EG⊥CD,所以CD⊥面