如图3,D是△ABC内任意一点,连结BD,DC,试说明AB AC>DB DC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:43:58
三角形内部取D点后,连接DA,DB,DC得到三个三角形,每个三角形都由两边之和大于第三边(如DA+DB>DC),类似可得三个式子,相加,化简即可证得.
证明:因为AP²=AD²+DP²=AF²+FP²BP²=BE²+EP²=BD²+DP²CP²
延长BD交AC于点E在三角形ABE中AB+AE>BD+DE在三角形DEC中DE+EC>DCAB+AE+DE+EC>BD+DE+DC即AB+AC>BD+DC
证明:延长BD交AC于E.∵∠BDC是△DEC的一个外角,∴∠BDC>∠DEC,又∵∠DEC是△ABE的一个外角,∴∠DEC>∠A,∴∠BDC>∠A.
1)延长BD交AC于E在△ABE中∵AB+AE>BD+DE∴AB+AE+EC>BD+DE+EC而DE+EC﹥CD∴BD+DE+EC﹥BD+CD即AB+AC﹥BD+DE+EC﹥BD+CD
∵PA+PB>AB,PB+PC>BC,PA+PC>CA∴PA+PB+PB+PC+PA+PC>AB+BC+CA∴PA+PB+PC>0.5(AB+BC+CA).
证明:延长BP交AC于点E,则在ΔABE中有:AB+AE>BE即AB+AE>PB+PE又在ΔPEC中有:EP+EC>PC∴(AB+AE)+(EP+EC)>(PB+PE)+PC即AB+AC>PB+PC
证明:∠BPC=180°-(∠PBC+∠PCB);∠A=180°-(∠ABC+∠ACB);∵∠PBC+∠PCB180°-(∠ABC+∠ACB);即∠BPC>∠A.
有图吗?发一个,再问:忘了..再答:证明ABBC>OBOC证:延长BO交AC于D因为ABAD>BD=OBOD,即ABAD>OBOD,又因为ODDC>OC上述两不等式两边相加得:所以ABADODDC>O
(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+
延长BP与AC交于D点,∠BPC是△PDC外角所以∠BPC>∠BDC而∠BDC是△ABP的外角,所以∠BDC>∠A故∠BPC>∠A.
再问: 再问:如图,在三角形ABC中,BE平分角ABC,CE平分角ACD,BE、CE相交于点E。求证:角E=二分之一角A再答: 再问: 再问: 再问
题目错了!延长BP交AC于点E,在△ABE中,AB+AE>BE在△PEC中,PE+EC>PC∴AB+AE+PE+EC>BE+PC∴AB+AE+PE+EC>BP+PE+PC(注BE=BP+PE,AE+D
证明:延长BP交AC于点E,则在ΔABE中有:AB+AE>BE即AB+AE>PB+PE又在ΔPEC中有:EP+EC>PC∴(AB+AE)+(EP+EC)>(PB+PE)+PC即AB+AC>PB+PC所
过D作DE‖AC交AB于E,过D作DF‖AB交AC于F,所以四边形AEDF是平行四边形.有AE=DF,AF=DE,△BDE中,BE+DE>BD,△CDF中,CF+DF>CD,∴BE+DE+CF+DF>
∠A+∠1+∠2=∠BDC因为三角形ABC内∠A+∠1+∠DBC+∠2+∠DCB=180°三角形DBC内∠DBC+∠DCB+∠BDC=180°即∠A+∠1+∠DBC+∠2+∠DCB=∠DBC+∠DCB
证明:延长BD交AC于E,∵∠BDC是△EDC的外角,∠BEC是△ABE的外角,∴∠BDC=∠2+∠BEC,∠BEC=∠A+∠1,∴∠BDC=∠BEC+∠2=∠1+∠A+∠2,∴∠BDC=∠1+∠A+
DA=DB+DC典型的取长补短题:延长BD到E,使DE=DC,连结CE,则△DCE是等边三角形再证明△BCE≌△ADC即可得结论也可以在AD上截取DE=DC,得△DCE是等边三角形,再证明△BDC≌△
因为:①PA+PB﹥AB(两边之和大于第三边)②PA+PC﹥AC(两边之和大于第三边)③PB+PC﹥BC(两边之和大于第三边)三式相加得2(PA+PB+PC)﹥AB+BC+AC