如图4,圆O是rt三角形ABC的内切圆,角ACB=90,且AB=13,AC=12
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 20:32:29
圆半径2,OG为根号5再问:怎么算←再答:圆半径等于(AC+BC-AC)/2再问:OG呢再答:三角形OGF中OF=2,FG=1,所以OG为根号5
已知,斜边ab与圆o相切于点d,可得:od⊥ab,而且,ac⊥bc,∠bae=∠cae,可得:ad/ao=cos∠bae=cos∠cae=ac/ae,所以,ad×ae=ao×ac.
证明:【1】第一步:∠ACD=90°→AD是圆O的直径→∠AED=90°第二步:AD是三角形的角平分线→∠DAE=∠DAC又∵AD=AD∴△ACD≌△AED(AAS)→AC=AE【2】由勾股定理可求得
如图,过A做线段AM,使得AM=AB=AC,且角DAM=角DAC,则角EAM=角EAB,三角形ABE与三角形AME全等,三角形AMD与三角形ACD全等.从而角AMD=角ACD=45°,同理角AME=4
面积为6.AD=2,内切圆半径=1,所以三角形AOD中(AOD也是直角三角形),AD=2,OD=1,则AO=根号下5.设于是,sin
连接od交bc于点E,应为D是弧BC的中点所以od垂直bc,所以角deb等于90,应为ab是直径所以角acb为90,所以bc为4根号2,od垂直bc所以be等于2根号2,三角形obe相似三角形abco
作OD垂直于BC,垂足为D,当圆O与直线BC相切时,OD=r=1/2,因为角B=60度所以BO=ODsinB=(根号3)/4.因为BO=a,所以当a=(根号3)/4时,直线BC与圆O相切,当0
1、证明:连接DO、BD.∵AB为直径∴角ADB=90°(直径所对的圆周角为90°)∵角ADB+角CDB=180°∴角CDB=180°-角ADB=90°角EDB标角1角EBD标角2角OBD标角3角OD
确认D、E是切点.半径r.①∵四边形CDOF为正方形{切线定义,四个角是直角},r=CD=CF;∵5=AB{勾三股四玄五}=AF+BD{切线长定理}=(4-r)+(3-r)=7-2r,∴r=1.②移动
D=4设半径BE=BF=X(4+X)平方+(6+X)平方=10平方一个解是22X=2*2=4
证明:连结DM∵AD=BD,M为AB中点∴DM⊥AB∴∠DME+∠AME=90°∵ME⊥AC∴∠A+∠AME=90°∴∠DME=∠A又∵∠DEM=∠C=90°∴△MDE∽△ABC∴DE:BC=ME:A
解∵AC为直径,∴AB⊥BC,∵EF⊥BC,∴AB∥EF,∵弧AD=弧BD,∴AB⊥OD,(过圆心平分弧的直线垂直平分弦),∴OD⊥EF,∴EF为圆O的切线.
==设CE=CF=X因为切线BDBEECCFFAAD所以AF=AD=6,BD=BE=4所以在Rt△ACB中(4+X)平方+(6+X)平方=10平方X=2所以AC=4+X=4+2=6园O半径=X=2
角A为50度角ABC为九十度角C为四十度问题提清楚再说再问:对不起,是∠ACB=90°再答:角A为50度角ABC为40度因为EO=FO且角OFC=角OEC=角ECF=90度所以EOFC为正方形所以角C
过C作CD⊥AB,D为垂足∵MN⊥AB∴CD//MN∴∠DCN=∠N∵CN平分∠ACB∴∠ACM+∠MCN=∠ACN=∠BCN=∠DCN+∠BCD∵CM是斜边AB上的中线∴AM=BM=CM∴∠A=∠A
AB=8/sin30°=8/(1/2)=16⊙O与AC相切,O到AC距离=r=2这时AO=2r=4(1)当x=4时,⊙O与AC相切,当0≤x
半径r,AO:AB=OE:BC(4+r):(4+2r)=r:6r=-3舍去或r=4元0面积=16π
(2)、OF=CF,则EF是三角形OBC的中位线,EF‖AB,DE⊥BC,OB=OD,四边形OBED是正方形,连结OE,OE是三角形ABC的中位线,OE‖AC,〈A=〈EOB=45度,〈ACO=〈CO
求的应该是BN+MN的最小值吧 过点B作BO⊥AC于O,延长BO到B',使OB'=OB,连接MB',交AC于N,此时OB'=MN+NB'=MN+BN的
(1)∵∠ABC=30°,∴∠BAC=60°.又∵OA=OC,∴△AOC是正三角形.又∵CD是切线,∴∠OCD=90°.∴∠DCE=180°-60°-90°=30°.而ED⊥AB于F,∴∠CED=90