如图46-2,已知直线y=﹣3 4x 3分别交x轴,y轴
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 07:57:55
y=-√3x+2√3得出A点坐标(2,0),B点坐标(0,2√3)三角形DAB沿直线DA折叠所以AB=AC,DB=DCAB=√〔(2√3)^2+2^2〕=4AC=4,所以C点的坐标为(4,0)设D点的
(1)动点M到点F的距离等于它到直线 y=-1的距离. 抛物线方程为:x²=4y(2)圆的半径 r=1 &
1、圆心到切线距离等于半径到x轴距离=|y|=|2x-1|=22x-1=±2x=-1/2,3/2所以P(-1/2,-2),(3/2,2)2、到y轴距离=|x|=2x=±2所以P(-2,-5),(2,3
有夹角公式为:tanθ=(k1-k2)/(1+k1k2)的绝对值可设方程为y=k(x-2)+1y=-2.5x-1.5tan45=(k+2.5)/(1-2.5k)的绝对值解出k=-3/7k=7/3不然以
证明:直线y=2x+b过点A(-2,-3),=>b=1,=>y=2x+1;直线y=2x+b与函数y=k/x(x>0)的图像相交于点B(1,m),=>B在直线y=2x+1上,=>m=3,=>k=3;令C
洛逸夏,你好:所求圆与直线L2相切于点P(3,-2),则圆心在过点P且垂直于L2的直线m上直线m的方程为y+2=x-3,即x-y-5=0.将直线m与直线L1的方程联立,解得圆心坐标为C(1,-4)半径
(2^21,0)y=√3x,说明斜率为√3=tan(60°)或者OM=2,所以MN=2√3,所以ON=4,OM=ON/2,所以∠nom得60°
(1)∵点A(3,m)在直线y=x-2上∴m=3-2=1∴点A的坐标是(3,1)∵点A(3,1)在双曲线y=kx上∴1=k3∴k=3(2)存在①若OA=OQ,则Q1(10,0);②若OA=AQ,则Q2
把x=1代入y=3x得y=3,∴B1的坐标为(1,3),∵△A1B1C1为等边三角形,∴A1C1=A1B1=3,∠B1A1C1=60°,∴A1A2=3cos30°=32,∴A2的坐标为(52,0),把
因为:过PQ的圆恰过坐标原点所以:设该圆D的方程为x^2+y^2+Ax+By=0D(-A/2,-B/2)因为:PQ为圆D的直径所以:D在直线l上即-A/2-B-3=0……(1)又:圆C与圆D的交线方程
(1)S=2y(2)y=1/2x+3S=2y=x+6(3)S=x+6=2y当S=6x=0,y=3成立S可以等于6
直线y=-根号3x+4与直线y=-根号3x是平行线,不可能相交,请改正!
首先直线必经过点A(0,-3),又经过点M(-2,1),故可求的其斜率k=(1-(-3))/(-2-0)=-2,得直线方程为y=-2x-3,从而求出其与Y、X轴交点坐标
令:y=0,代入l1与l2:x=-3/2与x=5,所以B(-3/2,0),C(5,0);这两条直线联立方程组,并用l1的方程减l2的方程两边,得:3x-2=0,x=2/3,y=4/3+3=13/3,所
由y=-√3x+2√3得:A(2,0),B(0,2√3)三角形DAB沿直线DA折叠所以AB=AC,DB=DCAB=√〔(2√3)^2+2^2〕=4AC=4,所以C点的坐标为(4,0)设D点的坐标为(0
1、将M(-2,1)代入y=kx-3中-2k-3=1k=-2所以直线的解析式:y=-2x-3直线x轴交点坐标(-3/2,0)Y轴的交点坐标(0,-3)2、|b|=3,b=±3(1)将A(2,1)代入y
(Ⅰ)设圆心为M(a,b),半径为r,依题意,b=-4a.(2分)设直线l2的斜率k2=-1,过P,C两点的直线斜率kPC,因PC⊥l2,故kPC×k2=-1,∴kPC=−2−(−4a)3−a=1,(
∵圆心在l1上,直线l1:4x+y=0,∴设圆心坐标为(m,-4m)又∵圆与直线l2相切于点P,直线l2:x+y-1=0以及点P(3,-2).∴|m−4m−1|2=(m−3)2+(−4m+2)2即m2
(1)由题意得,令直线l1、直线l2中的y为0得:x1=-32,x2=5,由函数图象可知,点B的坐标为(-32,0),点C的坐标为(5,0),∵l1、l2相交于点A,∴解y=2x+3及y=-x+5得: