如图5-20,三角形abc和三角形bec均为等腰直角三角形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:45:56
如图5-20,三角形abc和三角形bec均为等腰直角三角形
如图,己知三角形ABC和三角形ADE都是等腰三角形,AB=AC,AD=AE,且角DAB=角EAC,求证,三角形ABC∽三

你题目肯定搞错了,这两个三角形不可能相似我们原来都是证明DE∥BC的.  证明:∵∠B=∠C,AB=AC,∠DAB=∠EAC∴△ABF全等于△ACG(ASA)∴AF=AG,即△AFG也是等腰三角形∴∠

在三角形ABC中,AE和BF是中线且交于点P,已知三角形BEP的面积为5,求三角形ABC的面积.如图::

中线交点是中线的三等分点BPC里面等底同高BPC面积是10,然后三等分点等底同高BPA是俩BPE是10,同理APC是10加到一起是30.引用怎样证明三角形的重心(中线的交点)是中线的一个三等分点

如图,已知三角形abc是面积为根号三的等边三角形,三角形abc相似于三角形ade,ad等于2ad,角bad等于45度,a

这是2011•苏州中考题:原题表述:(2011•苏州)如图,已知△ABC是面积为根号3的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则

如图,三角形ABC和三角形ECD都是等边三角形,B C D三点在一条直线上求证:BE=AD\

证明:因为△ABC,△ECD都是等边三角形所以,AC=BC,EC=DC,∠ACB=∠ECD=60°所以,∠ACB+∠ACE=∠ECD+∠ACE,即,∠BCE=∠ACD所以,△BCE≌△ACD所以,BE

如图 ,三角形ABC和三角形DEF是两个格点三角形

如图.△ABM≌△DEN△CBM≌△DFN∵AB=√(4^2+4^2)=4√2DE=√(4^2+4^2)=4√2AM=√(4^2+1^2)=√19DN=√(4^2+1^2)=√19BM=3,EN=3∴

如图三角形ABC用直尺和圆规作图.

以点B为圆心画一个圆,以圆弧与CB、AB交界的地方为圆心再画两个圆,将这两个圆交界的点相连接,就成了角B的角平分线.中垂线:以A、B两点为圆心,划出两个圆将连个园接触的点相连接.中线:就用刚才中垂线与

如图在三角形abc中,bd和CD别是三角形abc的外角.

要过程吗再答:由题可知设∠ACB为x°,所以∠ABC=180-40-xEBC=40+xFCB=40+180-40-x所以DBC+DCB=EBC/2+FCB/2所以DBC+DCB=(40+x)/2+(4

如图5,三角形ABC的三条中线AD,BE,CF交于点H,如果三角形ABC的面积为6.请分别说出面积为

解面积为三的有BDADCA为2的有AHCAHBBCH为1的有AHEEHCCHDBDHFBHAHF这题主要运用中线的性质不懂还可以问我

如图B、C、D三点共线,三角形ABC和三角形CDE都是等边三角形,AD和BE相交于点F求证CG=CH

BC=AC,CE=CD,∠BCE=∠ACD所以得出三角形BCE和三角形ACD全等所以∠BEC=∠ADC又因为CE=CD,∠HCD=∠GCE=60度所以得出三角形HCD和三角形GCE全等因此CG=CH

如图,p是三角形abc的角abc和角acb的平分线的交点,过点p做dec……找出图中的等腰三

等边三角形是三角形BDP和三角形CEP∵BE是∠B的角平分线∴∠DBP=∠PBC又∵DE平行BC∴∠DPB=∠DBP(两直线平行,内错角相等)∴PD=DB同理PE=EC∴DB+EC=DE

如图△ABC和△GAF是两个全等的等腰直角三角形,找出图中的三队相似三角形(不包括全等)

△ABE∽△DAE,△ACD∽△DAE,△ABE∽△ACD证明:∵△ABC≌△GAF,且都是等腰直角三角形∴∠B=∠C=∠FAG=∠F=45°又,∠AEB=∠AEB∴△ABE∽△DAE

如图,三角形ABC和三角形ADC是三角形ABC分别沿着AB,AC边翻折180度形成的,

解:设AE与CD交于M.∠1:∠2:∠3=28:5:3;则∠BAE=∠1=[28/(28+5+3)]*180度=140度.∴∠CAM=360°-∠1-∠BAE=80°.∵∠E=∠3=∠ACM;∠EMD

如图,在三角形abc和三角形dcb中,ab等于dc,ac等于db,ac于db相较于点m.(1)请说明三角形abc全等于三

)证明:如图,在△ABC和△DCB中,∵AB=DC,AC=DB,BC=CB,∴△ABC≌△DCB;(4分)据已知有BN=CN.证明如下:∵CN∥BD,BN∥AC,∴四边形BMCN是平行四边形,(6分)

如图 在三角形ABC中∠ABC和∠ACB的三等分线交与DE两点,求证:角BDC=60度+2/3角A

连接AD并延长至M∠BDC=∠BDM+∠MDC=∠BAD+∠ABD+∠dAC+∠DCA=(∠BAD+∠DAC)+(∠ABD+∠DCA)=∠BAC+1/3(∠ABC+∠ACB)=∠BAC+1/3(180

如图,三角形ABC中,角B的平分线和三角形ABC的外角平分线

解题思路:根据题意,由三角形外角的知识可求解题过程:见附件最终答案:略

如图1-10,AD.BE.CF是三角形ABC的三条中线,相交于点O,S三角形BDO=1,求S三角形ABC

根据重心性质,∵AO=2OD,∴S△ABO=2S△BDO=2,(高相同),∵BD=CD,∴S△BDO=S△ODC=1,同理,S△AOC=2S△ODC=2,∴S△ABC=1+1+2+2=6.