如图5:1:25在△abc中点o是ac边上的动点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:15:20
1,连结BE,因为BD=BC,所以△BCD是等腰三角形因为点E是CD的中点所以BE是等腰△BCD底边CD的垂直平分线所以BE垂直于CD所以△ABE是直角三角形因为F是AB的中点所以EF=1/2AB(直
延长CM交AB于D,∵AM⊥CM,∴∠AMC=∠AMD,∵AM平分∠BAC,∴∠MAC=∠MAD,∵AM=AM,∴ΔAMC≌ΔAMD,∴DM=CM,AD=AC=3,M为CD中点,∵N为BC中点,∴MN
取AB的中点E,连接DE、EM.因为,DE是Rt△ABD斜边上的中线,所以,DE=BE=(1/2)AB,可得:∠BDE=∠B.因为,EM是△ABC的中位线,所以,EM‖AC,可得:∠DME=∠C.因为
因为13*13=12*12+5*5根据勾股定理的逆定理的三角形ABC是直角三角形直角三角形斜边上的中线是斜边的一半.则CD=13/2
有图吗,楼主再问:ͼ�Լ���
连结BE,∵DB=BC,点E是CD的中点,∴BE⊥CD∵点F是Rt△ABE中斜边上的中点,∴EF=1/2AB
文档里有图片 :△ABE的面积是1, E分别是AD的中点, 那么△ABD的面积是2 同样△ABD的面积是2 ,&n
如图8,在△ABC中,点D1为BC的中点,SAD1C=1/2点D2为AD1中点,SAD2C=1/21/2点D3为CD2中点,SAD3C=(△AD2D3)面积=1/21/21/2当作出第n条中线时,最小
证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠EAC,在△ABE和△ACE中,AB=AC∠BAE=∠EACAE=AE,∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵∠BAC=45°,
在ΔABD与ΔACD中,AB=AC,AD=AD,BD=CD,∴ΔABD≌ΔACD,∴∠DAE=∠CAE,在ΔABE与ΔACE中,AB=AC,∠BAE=∠CAE,AE=AE,∴ΔABE≌ΔACE,∴BE
∵D、E、F分别是AB、BC、CA的中点∴EF=1/2AB又AB=2CD∴EF=CD=5cmAB=2CD=10cm∴AC=8cm∴CF=4cm
证明:(1)取AC的中点G,连接OG,EG,∵OG∥AB,EG∥AS,EG∩OG=G,SA∩AB=A,∴平面EGO∥平面SAB,OE⊂平面OEG∴OE∥平面SAB.(2)∵SO⊥平面ABC,∴SO⊥O
证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠EAC,在△ABE和△ACE中,AB=AC∠BAE=∠EACAE=AE,∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵∠BAC=45°,
延长AD到E,连BC,根据对角线互相平分的四边形是平行四边形,得到abec是平行四边形,则AC=BE=13,由于ab=5,ae=6*2=12,所以根据勾股逆定理,三角形ABE是直角三角形,所以AB垂直
逆命题在△ABC中,若D是△ABC的AB中点,E在AC上,且DE=1/2BC,则E是在AC的中点或在△ABC中,若E是△ABC的AC中点,D在AB上,且DE=1/2BC,则D是在AB的中点再问:判断逆
证明:连接BE因为BD=BC,所以三角形BDC是等腰三角形因为E是CD中点,所以BE⊥CD所以三角形ABE是直角三角形F是斜边AB中点根据直角三角形斜边上中线等于斜边之半所以EF=AB/2
简单点说吧.第一题第一问,取BC的中点M,连接EM,FM.剩下的不用说了.第二问用第一问结论,用边边边定理证明.第二题知道∠EAB=∠FBA就行了.剩下的自己解决吧
分析:根据等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及平行线的性质,通过对角度的计算,分别作出符合要求的等腰三角形.如图,(1)过A作AD⊥BC,再过点D作DE∥AB,DF∥AC
我给的是n个的通用公式,你看看,如果想要全部的解题过程请去我截图里面的链接中搜答案,解析过程有点长我截不完,望见谅.