如图6,p是△abc内一点,试说明∠bpc大于∠a
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:04:25
如图所示:.
1、∠P+∠1+∠2=180(1)∠A+2∠1+2∠2=180(2)2(1)-(2)得2∠P-∠A=180即∠P=90°+1/2∠A成立2、∠P+∠1+∠2=180(1)∠A+3∠1+3∠2=180(
可把三角形ABC内的三个三角形分别沿AC,BC,AB折叠,得到对应点P,P2,P3,得到一个六边形,三角形ABC的面积为六边形面积的1/2,然后再连接P1P2P3得到四个特殊的四边形,此题答案也就出来
PA+PB>ABPA+PC>AcPB+PC>BC2PA+2PB+2PC>AB+AC+BC、PA+PB+PC>0.5(AB+BC+AC)
∵PA+PB>AB,PB+PC>BC,PA+PC>CA∴PA+PB+PB+PC+PA+PC>AB+BC+CA∴PA+PB+PC>0.5(AB+BC+CA).
证明:延长BP交AC于点E,则在ΔABE中有:AB+AE>BE即AB+AE>PB+PE又在ΔPEC中有:EP+EC>PC∴(AB+AE)+(EP+EC)>(PB+PE)+PC即AB+AC>PB+PC
证明:根据三角形两条边长的和大于第三边原理,有:PA+PB>ABPA+PC>ACPB+PC>BC不等式两边分别相加,得2(PA+PB+PC)>AB+BC+AC推出PA+PB+PC>1/2(AB+BC+
∵△P’AB≌△PAC∴∠P’AB=∠PAC∵∠BAP+∠PAC=60°∴∠P'AB+∠BAP=60°∵P'A=PA,∠P'AP=60°连接P'P∴△P'AP是等边△∵P'A=PA=6∴P'P=PA=
证明:∠BPC=180°-(∠PBC+∠PCB);∠A=180°-(∠ABC+∠ACB);∵∠PBC+∠PCB180°-(∠ABC+∠ACB);即∠BPC>∠A.
才做过这道题.因为在△ABP中AP+BP>AB①在△ACP中PC+PA>AC②在△BCP中,PB+PC>BC③三式相加得2AP+2BP+2PC>AB+BC+AC所以PA+PB+PC>1/2(AB+BC
∵∠BPA=∠PBA+BAP,∠CPD=∠ACP+∠CAP∴∠BPD+∠CPD>∠BAP+∠CAP
证明:如图,延长BP与AC相交于点D,在△ABD中,∠1=∠A+∠ABP,在△CPD中,∠BPC=∠1+∠ACP,∴∠BPC=∠A+∠ABP+∠ACP.
(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+
延长BP与AC交于D点,∠BPC是△PDC外角所以∠BPC>∠BDC而∠BDC是△ABP的外角,所以∠BDC>∠A故∠BPC>∠A.
题目错了!延长BP交AC于点E,在△ABE中,AB+AE>BE在△PEC中,PE+EC>PC∴AB+AE+PE+EC>BE+PC∴AB+AE+PE+EC>BP+PE+PC(注BE=BP+PE,AE+D
∵∠BPC=∠PDC+DCP∴∠BPC>∠PDC∵∠PDC=∠A+∠ABD∴∠PDC>∠A∴∠BPC>∠A
证:因为PC
证明:延长BP交AC于点E,则在ΔABE中有:AB+AE>BE即AB+AE>PB+PE又在ΔPEC中有:EP+EC>PC∴(AB+AE)+(EP+EC)>(PB+PE)+PC即AB+AC>PB+PC所
因为:①PA+PB﹥AB(两边之和大于第三边)②PA+PC﹥AC(两边之和大于第三边)③PB+PC﹥BC(两边之和大于第三边)三式相加得2(PA+PB+PC)﹥AB+BC+AC
绕A点顺时针旋转三角形ABP,使AB与AC重合B点的新位置为D则∠APB=∠ADC连接PD因为AP=AD则∠ADP=∠APD因为,∠APB>∠APC则,∠PDC>∠DPCPC>CD据旋转,CD=BP所