如图7-5-20,已知△ABC中,∠BAC=90°,AD⊥BC于点D

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 06:59:51
如图7-5-20,已知△ABC中,∠BAC=90°,AD⊥BC于点D
如图,已知:三角形ABC中,BC

∵ED垂直且平分AB,∴BE=AE.∵BE+CE+BC=15cm∴AE+CE+BC=15cm即AC+BC=15cm∵AC=9cm∴BC=6cm

如图,已知AD是△ABC的中线

果然是缺了BC的长度这个条件啊.过D向BE做高由于翻折,易得角CDE=角BDE=90度,且DE=DC.又DC=BD,因此DE=BD,即三角形BDE是等腰RT三角形.由此易得BE平行于AD,所以四边形B

如图,已知AD是△ABC的中线.

1.延长AD至点A',使AD=A'D,连接A'B,A'C,则△A'BC即与△ABC成中心2.A'B=AC=4cm ,AB=6cm ,

已知,如图,在△ABC中,AB

∵AC=8,C△ABE=14,    ∴AB+AE+BE=14    ∵DE垂直平分BC  &nbs

已知,如图,△ABC和△CDE都是等边三角形,

1.AD=BE,∠AEB=60°,证明如下:∵ΔABC,ΔCDE是正Δ∴CB=CA,CE=CD,∠BCA=∠ECD=60°∴∠BCE=∠BCA+∠ACE=∠ECD+∠ACE=∠ACD∴ΔBCE≌ΔAC

如图,已知Rt△ABC中.

证明:作AG平分∠BAC,交BD于点G∵∠BAC=90°,AE⊥BD∴∠DAE+∠ADB=ABE+∠ADB=90°∴∠ABG=∠CAF∵△ABC是等腰直角三角形∴AB=AC,∠C=∠BAG=45°∴△

如图,已知△ABC≌△ADE,∠BAD=20°. 在线等.

20°因为△ABC≌△ADE,所以∠BAC=∠DAE∠BAD=∠BAC-∠DAC∠CAE=∠DAE-∠DAC所以∠BAD=∠CAE=20°再问:咳咳,求步骤咯~再答:望采纳,O(∩_∩)O谢谢!祝学习

如图,已知△ABC,求作:

(1)延长Ab做cf垂直延长线ab(2)延长bc做ad垂直延长线bc再问:老师让尺规作图再答:(1)以c,a为圆心各画个弧(2)同上

已知:如图在RT△ABC中,

过B点作AC的平行线L1过D点作BC的平行线L2,交L1于点G,交AE于J过点E作AC的平行线L3,交L2于点H连接AG交L3于点I则AD=BC=GD,GH=BE=DC=HE那么角AIE=180°-角

已知,如图,△ABC中,

列关系式就可以了.角ABD=角CBD,角AED=角CED,2角CBD+80=2角AED,角D+角AED+180-(80+2角CBD)+角CBD=180化简得到角D=角CBD-角AED+80角CBD-角

如图,已知△ABC,AB=AC

解题思路:你的题目无图,(1)如图1,作AM⊥DC于M,EN⊥DC于N,由正方形的性质就可以得出∠NED=∠MDA,得出△END≌△DMA,就有EN=DM.ND=MA,得出NB=EN而得出结论;(2)

如图,已知△ABC中,AB=AC=20厘米,∠ABC=∠ACB,BC=16

(一)16-6t(二)全等,在△BPD和△CQP中BP=CQ=6∠B=∠CBD=½AB=20÷2=10CP=BC-BP=16-6=10BD=CP∴△BPD≌△CQP(SAS)(三)如果不相等

如图7,已知线段a,用尺规作△ABC,使AC=a.

先用尺子画出BC=2b-a的长度.尺子作AC=a以A为原点,AB=b为半径作一圆弧1以C为原点,BC=2b-a为半径作一圆弧2交圆弧1,交点即为B连接ABC三点即得三角形ABC再问:把图话给我可以吗再

【二次函数】已知,如图在Rt△ABC中

这不难(1)∵a,b是方程x^2-(m-1)x+m+4=0的两根∴a+b=m-1①a*b=m+4②∴AB2=52=a2+b2=(a+b)2-2ab=(m-1)2-2(m+4)解得m1=6m2=-2(∵

已知,如图,o是△abc的

再答:不容易啊。找了张卫生纸给你写的。求采纳再问:enen再答:麻烦采纳啊亲再问:还有再答:先采纳。。咱一道一道来。做人要厚道再问:

1、如图,已知△ABC

(1)略(2)因为OM平分AB,所以AM=BM又因为MO=MO角AMO=角BMO所以三角形AMO全等于三角形BMO所以AO=BO同理可证三角形ANO全等于三角形CNO所以AO=CO又因为AO=BO所以

如图,已知△ABC是等边三角形

解题思路:过D作DM∥AB交BC于M,则△CDM为等边三角形,得CD=DM,而BE=CD,得到DM=BE,易证得△FDM≌△FEB,根据全等三角形的性质即可得到结论;解题过程:varSWOC={};S

如图已知△ABC的周长是20,OB,OC分别平分∠ABC

连接OA,那么OA平分∠BAC做OE⊥AB于E,OF⊥AC于F∵OB、OC、OA分别平分∠ABC,∠ACB,∠BAC且OD⊥BC∴OD=OE=OF∴S△ABC=S△BOC+S△AOB+S△AOC=1/