如图8,D是A,C上的一点,过D做DE平行AB交BC于E点若角DBE=角BDE

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:34:38
如图8,D是A,C上的一点,过D做DE平行AB交BC于E点若角DBE=角BDE
如图,已知直线PA交圆O于A、B两点,AE是圆O的直径,点C为圆O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D

设DA=X,DC=6-DA=6-X,连接EC,AE是直径,所以∠ACE=90°=∠CDA,∠CAE=∠CAD,所以⊿ACE∽⊿ADC,[AA]AE:AC=AC:ADAC²=AE*ADAD&#

如图,以知,角ABC=90,AB=BC,D是AC上一点,分别过A,C作BD的垂线,垂足分别为E.F,试说明:EF=CF-

因为角ABC=90,AB=BC,角ABD与角DBC互余,角DBC与角BCF互余角ABD=角BCFAB=BC角AEB=角BFC=90度所以AEB相似BFC所以BE=CF又因为EF=BE-BF所以EF=C

如图,PA,PB是圆O,A、B为切点,过弧AB上的一点C作圆O的切线,交PA于D,交PB于E,

(1)连结OA、OB、OC、OD、OE,∵PA、PB是圆O切线,∴∠OAP=∠PBP=90°,又∵∠APB=70°,∴∠AOB=55°,∵∠OAD=∠OCD=90°,OD=OD,OA=OC,∴RT△A

如图,已知直线PA交圆O于A,B两点,AE是圆O的直径,点C为圆O上一点,且AC平分角PAE,过C作CD⊥PA,垂足D

过O作OM⊥AB于M.即∠OMA=90°,∵AB=8,∴由垂径定理得:AM=4,∵∠MDC=∠OMA=∠DCO=90°,∴四边形DMOC是矩形,∴OC=DM,OM=CD.∵AD:DC=1:3,∴设AD

如图,已知直线 交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA ,垂足为D

出现DC+DA=6一般首先考虑从几何上构造.但是这个题有更简单的方法.题目给出AE=10,而三角形ACD和AEC相似,设AD=x,DC=y,可以根据相似关系列出xy的一个关系式.结合x+y=6可以列两

如图,数轴上A,B,C,D四点对应的数均为整数,分别为a.b.c.d,且2c-3a=11,问:A.B.C.D中,那一点是

设a或c为原点,因为A、B、C、D四点对应的数均为整数,那么2c-3a=11就不可能成立.按你给的图的位置,设d为原点,那么c的绝对值比a的绝对值要大,那么也不可能符合2c-3a=11的条件(2c-3

如图,已知直线y=-x+4与两坐标轴分别相交于点A,B两点,点C是线段AB上任意一点,过C分别作CD⊥x轴于点D,CE⊥

四边形ODCE为正方形,则OC是第一象限的角平分线,则解析式是y=x,根据题意得:y=xy=−x+4,解得:x=2y=2,则C的坐标是(2,2),设Q的坐标是(2,a),则DQ=EP=a,PC=CQ=

如图,AB是⊙O的直径,C是⊙O上一点,AD垂直于过点C的切线,垂足为D.

(1)证明:如图,连接OC,∵DC切⊙O于C,∴OC⊥CF,∴∠ADC=∠OCF=90°,∴AD∥OC,∴∠DAC=∠OCA,∵OA=OC,∴∠OAC=∠OCA,∴∠DAC=∠OAC,即AC平分∠BA

如图,AB是⊙O的直径,C是⊙O上一点,过圆心O作OD⊥AC,D为垂足,E是BC上一点,G是DE的中点,OG的延长线交B

(1)结论:OD∥BC,证明:∵AB是⊙O直径,C是⊙O上一点,∴∠ACB=90°.即BC⊥AC.∵OD⊥AC,∴OD∥BC.(2)结论:EF=BE+FC,证明:∵OD⊥AC,∴AD=DC.∵O为AB

①如图1,已知AB是圆O的直径,点C是圆O上一点,连接BC,AC,过点C作直线CD⊥AB于点D,点E是AB上一点,直线C

话说第一题.很简单.相似三角形概念.(1)点A和点F同在圆上,且都对应弦BC,所以角A=角F,CD垂直于AB,那么角DCB=角A,所以角DCB=角F,因此,三角形FCB相似于三角形CBG,所以BC/B

如图,在三角形ABC中,∠B为钝角,∠A=60°,D是射线BC上的一点,过D点作DE∥AC交射线BA于点E,F为射线.C

1)△ABC和△FDC相似三角形,DE∥AC,∠EDF=∠DFC=∠A=60°2)△ABC和△FDC相似三角形,DE∥AC,∠CDF=∠A=60°,∠EDF=180°-60°=120°

如图,AB是圆O的直径 C为圆O上一点,AD和过C点的切线相交于点D

1、连接BC,∠DCA=∠CBA,从而证明三角形DAC相似于三角形CAB,于是∠ADC=∠ACB=直角2、AD:AC=AC:AB,所以ACxAC=80,AC的长度就是把80开方就行了

如图,AB为定长的线段,作半圆OAB.P为半圆上一点,过P点作切线DC交过A点的切线AD、过B点的切线BC交于D、C.连

①不一定.显然有AD//BC,所以不可能有AD//BP的结论,如果为梯形必须AB//DP而AB⊥BC所以必须有DP⊥BC,此时四边形ABCD就为矩形了,P就为弧的中点了,从而有结论不一定成立,即错误.

1.如图已知AB是圆O的直径,C是圆O一点,连接AC,过点C做CD垂直AB于点D,E是AB上的一点,直线CE于圆O

在AB取点E,使AE=AD,易证三角形ADC与三角形AEC全等,可得:角ADC=角AEC三角形CB详细在AB上取点E,使AE=AD,连接CE因为AC平分角BAD所以角EAC=角DAC因为AE=AD,A

如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,C为⊙O上一点,且AC平分∠PAE,过点C作CD⊥PA于D.

(1)证明:连接OC.∵OC=OA,∴∠OAC=∠OCA.∵AC平分∠PAE,∴∠DAC=∠OAC,∴∠DAC=∠OCA,∴AD∥OC.∵CD⊥PA,∴∠ADC=∠OCD=90°,即 CD⊥