如图:菱形abcd放置在直线l上,ab=2,角dab=60度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 17:20:00
1、取CD中点M,连结EM、BM,BD,△DAB是正△,DF⊥AB,BM⊥CD,DF//BM,EM//PD,PD∩DF=D,EM∩BM=M,面EMB//面PDF,BE∈面BEM,故BE//平面PDF.
设变长a因为BC∥AF所以BC/AF=BE/AEa/a+1=2/2+aa=根号2
因为菱形ABCD所以AC,BD互相垂直平分且平分一组对角又ON⊥AD,OM⊥BC,OE⊥AB,OF⊥DC所以ON=OM=OE=OF(角平分线性质定理)
答案应该是这样的:因为四边形ABCD是菱形,所以AC垂直BD又因为BD所在直线的斜率为1,所以AC所在直线的斜率为-1(两直线垂直,其斜率之积为-1,前提斜率都存在)设AC所在直线为y=-x+n因为A
说好的图呢..y=0?再问:一个平面直角做标系,上面有个菱形,OABC。OA在x轴上在正半轴,O是原点再答:en,因为是菱形,所以OA=OC,A=(5,0),B=(8,4).因为面积要相等,所以直线要
⑴在线段BA上取一点R,使PB=RB,连接PR,∵ABCD是菱形,∴AB=BC,AD∥BC,∵∠BAD=120°,∴∠B=60°,∠PCQ=∠BAD=120°,∴ΔBPR是等边三角形,∠ARP=120
∵四边形ABCD,四边形BFDE为矩形∴∠A=∠F=90°,∠FBE=∠ABC=90°∴∠FBN+∠NBM=∠ABM+∠NBM∴∠FBN=∠ABM∵{∠A=∠F{AB=BF{∠FBN=∠ABM∴△AB
1.垂直,√3按照小聪的思路作完图之后,GF平行于AB平行于CD,P又是中点,角HDP=角GFP,角HPD=角GPE,P为中点,所以三角形HDP全等于三角形GFP,这样DH=GF,所以CH=CG,则有
(1)AH=FC(AFCH是矩形),有AE=AH=CG=CF,BF=BE=HD=DG;AE=AH,∠AEH=∠AHE;BF=BE,∠BEF=∠BFE,∠B+∠BAD=180°,2∠AEH+∠BAD=1
(1)∵CD∥GF,∠PDH=∠PFG,∠DHP=∠PGF,DP=PF,∴△DPH≌△FGP,∴PH=PG,DH=GF,∵CD=BC,GF=GB=DH,∴CH=CG,∴CP⊥HG,∠ABC=60°,∴
第一、二次旋转的弧长和=60π×3180+60π×3180=2×60π×3180,第三次旋转的弧长=60π×1180,∵36÷3=12,故中心O所经过的路径总长=12(2×60π×3180+60π×1
连接AF,作GH⊥AE于点H,则有AE=EF=HG=4,FG=2,AH=2,根据矩形的性质及勾股定理即可求得其周长.如图,连接AF,作GH⊥AE于点H,则有AE=EF=HG=4,FG=2,AH=2,∵
“じ☆ve紫菲儿”:您好.面积为1的小正方形,它的边长为√1=1(一)若排成一长列:则矩形ABCD的周长=(8+1)×2=18(二)若排成二行四列(或四行二列):则ABCD的周长=(4+2)×2=16
根据菱形的性质AC与BD垂直且互相平分所以OC=(1/2)ACOD=(1/2)BDAC=8BD=6则OC=4OD=3BD与AC垂直,所以,COD值一个直角三角形根据勾股定理OD方+OC方=CD方所以C
作BM⊥AC于M,FN⊥AC于N∵四边形ACEF是菱形∴AC//FE,AF=AC∵E,F,B在同一直线上∴AC//BE∴BM=FN【平行线间的平行线段长相等】∵四边形ABCD是正方形∴BM=½
先证四边形BNDM为平行四边形(BM平行DN,DM平行BN)再证三角形ABM全等于三角形FBN(AB=BF,角A等于角F等于90°,角FBM+NBM=90°角ABM+NBM=90°∴角FBM=ABM即
AD//BE,所以△AMD∽△EMB,从而BM/DM=BE/DA;而∠BAF=∠DAE,有公共角∠EAF,所以∠BAE=∠DAF,又∠ABE=∠ADF,AB=AD,所以△ABE≌△ADF,所以BE=D
因为菱形ABCD中,AB=2,∠C=60°,所以OD=1,BD=2,AO=√3,第一次旋转60°,O绕A转动60°,经过了√3∏/3,第二次仍然是绕A转60°,又经过了√3∏/3,第三次旋转60°,半
答:菱形ABCD中,对角线AC和BD相互垂直平分因为:BD=6,AC=8所以:BO=DO=BD/2=3所以:菱形面积=三角形ADC面积+三角形ABC面积=AC×DO÷2+AC×BO÷2=AC×(DO+