如图AB在圆O上,直线AC是圆O的切线 OC垂直OB,连接AB交OC于点D
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 10:34:30
的延长线上取一点E,连接EB,使∠OEB=∠ABC.(1)求证:BE是⊙O的切线(1)证明:∵AB是半圆O的直径,∴∠ACB=90°,∵ODAC,∴∠EDB=90°
(1)证明:∵AC是⊙切线,∴OA⊥AC,∴∠OAC=90°,∴∠OAB+∠CAB=90°.∵OC⊥OB,∴∠COB=90°,∴∠ODB+∠B=90°.∵OA=OB∴∠OAB=∠B
(1)证明:连接BE,则∠E=∠C;AB=AC,则:∠ABD=∠C=∠E;又∠BAD=∠EAB(公共角相等).则:⊿BAD∽⊿EAB,AD/AB=AB/AE,AB^2=AD*AE.(2)当点D在BC延
过O点作AB的垂线交AB于E,可知AE=BEOC=OD,OE=OE,三角形OEC,OED全等CE=DCAE-CE=BE-DEAC=BD
简单的说一下:如图,∠A=∠P=∠ACO=∠PCB=x,AC=PC所以:△AOC≌△PBC,得到OC=BC所以:△COB是等边三角形因此∠OCB=60°,所以:∠A=∠P=∠PCB=30°,∠PCO=
(1)连接OC,OE,O和E分别为AB和BD中点,所以OE//AD,即
如图∵AB是⊙O的直径∴∠AEB=90°,即AE⊥BC∴∠BAE+∠ABE=90°又∵CD⊥AB∴∠BCD+∠CBD=90°∴∠BAE=∠BCD又∠ADH=∠CDB∴△AHD∽△CBD∵O点是圆心,C
话说第一题.很简单.相似三角形概念.(1)点A和点F同在圆上,且都对应弦BC,所以角A=角F,CD垂直于AB,那么角DCB=角A,所以角DCB=角F,因此,三角形FCB相似于三角形CBG,所以BC/B
(1)证明:∵AC是⊙切线,∴OA⊥AC,∴∠OAC=90°,∴∠OAB+∠CAB=90°.∵OC⊥OB,∴∠COB=90°,∴∠ODB+∠B=90°.∵OA=OB∴∠OAB=∠B,∴∠CAB=∠OD
由于点E、F分别是AC、AB上的中点,在三角形ABC中,中位线EF=AB/2GE+FH=GH-EF=GH-AB/2由于AB是不变的,当GH最长时,GE+FH有最大值而在圆中,GH最长为直径,∴当GH为
如图,(1)∵AC切圆O于C,∴∠1+∠2=90°,∵OB⊥OD,∴∠B+∠4=90°,∵OA=OB,∴∠1=∠B,又∵∠3=∠4∴∠2=∠3,∴AC=CD (2)∵OC=√(AC²
(1)AC=CD,理由为:∵OA=OB,∴∠OAB=∠B,∵直线AC为圆O的切线,∴∠OAC=∠OAB+∠DAC=90°,∵OB⊥OC,∴∠BOC=90°,∴∠ODB+∠B=90°,∵∠ODB=∠CD
∠ACG=∠ABC=∠AFC,∠CAF公共,⊿ACG∽⊿AFC即AC÷AF=AG÷AC故AC^2=AG*AF
1由题很容易可以得出CO=DO连接MO,NO,MO=NO在ΔMCO和ΔNDO中,由勾股定理可以得出MC=ND所以ΔMCO≌ΔNDO所以∠MOC=∠NOD所以弧AM=弧BN(因为弧所对的圆心角相等,弧就
∠B=∠OAB,∠B+∠ODB=∠OAB+∠DAC=90°∴∠ODB=∠DAC又∵∠ODB=∠ADC∴∠ADC=∠DAC=∠ODB∴CD=AC
(1)证明:∵AC是⊙切线,∴OA⊥AC,∴∠OAC=90°,∴∠OAB+∠CAB=90°.∵OC⊥OB,∴∠COB=90°,∴∠ODB+∠B=90°.∵OA=OB∴∠OAB=∠B,∴∠CAB=∠OD
连接OD,∵AD是⊙O的切线,∴OD⊥AC,过O作OE⊥AB,垂足为E,又AC=AB,∴∠∠C=∠B,点O是BC的中点,∴OC=OB,∴⊿OCD≌⊿OBE﹙AAS﹚,∴OE=OD,又OE⊥AB,∴AB
在AB取点E,使AE=AD,易证三角形ADC与三角形AEC全等,可得:角ADC=角AEC三角形CB详细在AB上取点E,使AE=AD,连接CE因为AC平分角BAD所以角EAC=角DAC因为AE=AD,A