如图AB是圆o的直径,圆o过BC的中点D,且DE垂直AC于点E
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 01:25:33
OB=1,BC=2则OC=√5∴CE=√5-1∵∠CED=∠AEO=∠A=∠CBE,∠C=∠C∴△CED∽△CBE∴CE²=CD*CB即(√5-1)²=2CD∴CD=3-√5
证明(1):∵AD=DC,DE=DE,∠ADE=∠CDE=90度,∴△ADE≌△CDE(SAS),∴AE=CE.∴∠2=∠3,∴∠F=∠2=∠3.又∵∠2+∠3+∠4=90=∠1+∠2+∠F,∴∠1=
证明:连结AC∵AB是圆O的直径∴∠ACB=90°即BC⊥AC又∵PA⊥圆O所在平面,且BC在这个平面内∴PA⊥BC因此BC垂直于平面PAC中两条相交直线∴BC⊥平面PAC
PD=8AD/PD=S△ACB/S△CPB=2*S△COB/S△CPB(O为AB的中点)=2*OC/CP这里直角三角形PBO两条直角边的比是1:2,所以上面这个比求出来是1:4所以AD/PD=1/2,
过D作DE⊥AB垂足EDE=AE=2√2BE=4√2AB=6√2AP=12PD=PA-AD=8再问:BE=4√2是怎么来的?再答:∵PB=AB∴∠A=45°再问:我也知道啊,求不出来啊...BD不知道
①过C作半圆的切线,∠COB=90度;∠DAC=∠CAB,OA=OC,∠OCA=∠CAB∠COB=∠CAO+∠OCA=∠CAB+∠CAB=∠CAB+∠DAC=∠DAB,OC‖AD,∠ADC=90度;A
∵AB∥CE,∴弧AC=弧BE,∵∠AOC=∠BOD,∴弧AC=弧BD,∴弧DB=弧EB,即点B是弧DE的中点.
过点P作PD⊥BQ,则可知ABPD为矩形,BD=AP=1PD=ABQD=BQ-BD=-4-1=3由题可知PC=AP=1CQ=BQ=4则PQ=4+1=5在Rt△PDQ中,PD=PQ-QD=5-3则PD=
连接AC,BC因为AB是直径,弦CD垂直AB于P所以CP=1/2CD=4因为∠B=30°,角CPB=90度所以CB=CP/SIN30=4/0.5=8又因为角ACB=90度所以直径AB=CB/COS30
图不对哦证明:连接OB、OD∵CD、CB是圆O的切线∴∠ODC=∠OBC=90°∵OD=OB,OC=OC∴△OBC≌△ODC∴∠COB=∠COD∵OA=OD∴∠A=∠ODA∵∠BOD=∠A+∠ODA=
a‖b∵a是圆O切线∴a⊥AB(切线与半斤垂直)∵b是圆O切线∴b⊥AB∴a‖b(内错角相等都是90度,两直线平行)
解题思路:利用三角形相似分析解答解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/r
我只是想问一下“过D做圆O的切线交BC于E”这句话有什么用?你只要算出线段BC长度不大于2倍的线段DC就可以了.
这道题没有具体的函数关系式这道题主要的是看我们的趋势判断能力因为这里面没有数值写不出具体的关系式只能说是一个抛物线的数值关系你们现在还没有学到高中才有的哈你也可以看看http://baike.baid
解∵AC为直径,∴AB⊥BC,∵EF⊥BC,∴AB∥EF,∵弧AD=弧BD,∴AB⊥OD,(过圆心平分弧的直线垂直平分弦),∴OD⊥EF,∴EF为圆O的切线.
证明:∵AD//OC∴∠COB=∠DAO【同位角相等】∠COD=∠ODA【内错角相等】∵OA=OD∴∠DAO=∠ODA∴∠COB=∠COD又∵OB=OD,OC=OC∴⊿COB≌⊿COD(SAS)∴∠C
1、∵OA=OC=4 AE=2∴OE=OA-AE=2 AB=2OA=8∵CD⊥AB , AB是圆O的
1.连接AO交BC于E由题意得PA垂直于AOPA平行于BC所以BC垂直于AO又因为OB=OC所以三角形OBE全等于三角形OCEBE=CEBC垂直于AO 所以三角形AB