如图AB是圆的弦过点BABC垂直AB
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:04:28
(1)证明:∵OP//BC∴∠AOP=∠ABC∵AB是圆O的直径∴∠ACB=90∵AP是圆O的切线∴∠PAB=90∴∠ACB=∠PAB∴△ABC≈△POA(2)AB=2OB=4,AO=BO=2∵△AB
连结CO.∵PC是⊙O的切线,∴OC⊥PC.∵CO=AO,∴∠OCA=∠OAC.∵PC=PF,∴∠PCF=∠PFC=∠AFH.∴∠AFH+∠OAC=∠PCF+∠OCA=∠PCO=90°.∴AB⊥ED.
连接MO,交AB于点D,延长MO交圆于点E,连接NE∵M是弧AB的中点∴MO平分且垂直AB又∵角MNE=90°∴在四边形CDEN中角BCN+角E=180°角ACM=角BCN=180°-角E∴sin(角
∵点C为弧AB的中点,CD是圆O的直径\x0d∴CD垂直AB\x0d∴角CEB+角FCD=90度\x0d∵CD是圆O的直径\x0d∴角CFD=90度\x0d∵角FDC+角FCD=90度\x0d∴角CE
(1)∵OA过圆心且CD⊥AB∴弧AC=弧AD∴∠F=∠ACD又∵∠CAF=∠CAF∴△ACH∽△AFC(2)连接BC∵AD为直径∴∠ACB=90°又∵CE⊥AB∴AE×AB=AC²∵△AC
(1)角CEA=角D.(2)结论仍成立.证明:CD为直径,则∠DFC=90°,得∠D+∠DCF=90°;点C为弧AB的中点,则CD垂直AB,得:∠CEA+∠DCF=90°.所以,∠CEA=∠D.
话说第一题.很简单.相似三角形概念.(1)点A和点F同在圆上,且都对应弦BC,所以角A=角F,CD垂直于AB,那么角DCB=角A,所以角DCB=角F,因此,三角形FCB相似于三角形CBG,所以BC/B
(1)证明:∵AB是圆O的直径∴∠ACB=90º∵AP是圆O的切线∴∠PAO=90º=∠ACB∵BC//OP∴∠ABC=∠POA∴⊿ABC∽⊿POA(AA‘)(2)∵OB=2∴AB
连接OE,OM=OC/2=OE/2,OC垂直于AB,角OEM=30度.EF//AB,角AOE=角OEM=30度.[内错角]角EOC=90度-角OEM=90度-30度=60度.角CBE=角EOC/2=3
由已知条件可得AD=DB=8设圆的半径为x在RT△ADO中OA=x,DO=x-4,AD=88²+(x-4)²=x²64+(x²-8x+16)=x²80
(1)已知∠AOC=60°,∴∠BOC=120°,又OM平分∠BOC,∠COM=12∠BOC=60°,∴∠CON=∠COM+90°=150°;(2)延长NO,∵∠BOC=120°∴∠AOC=60°,当
1)设PO交BC于DPO是BC的平分线,PO垂直于BC因为AB是圆O的直径,所以,
1.连接OD,OA=OD,则∠DAO=∠ADO,AD为角平分线,有∠CAD=∠DAO,则∠CAD=∠ADO,所以AC//OD,又DE⊥AC,则∠CAD+∠ADE=90,∠ADE+∠ADO=90,所以O
1、∵OA=OC=4 AE=2∴OE=OA-AE=2 AB=2OA=8∵CD⊥AB , AB是圆O的
做CF垂直AN,因为角B=90,所以CF=AB,因为角CFD+角FCD=CDA,所以角EAD=角FCD,三角形DCF相似三角形AED,CF/CD=AD/DEAB/CD=AD/DEDE/DC=AD/DB
连接BD∵AB⊥CD即∠AED=90°CD∥BF∴∠ABF=∠AED=90°∵AB是直径,(连接BD)∴BF的圆切线,∠ADB=∠BDC=90°∴∠FBD=∠C=30°∴在Rt△BDF中DF=1/2B
我是最快的因为∠BCD=∠BAD,∠AED=∠CEB三角形CEB相似于三角形AED因为AD/BC=ED/BEAD=4根3因为平行四边形adcfcf=ad=4根3第二问:连接fo,co因为af=cd=f
1)证明:由OA=OB得,∠A=∠OBA又OC⊥OA,BE为圆的切线得90°=∠A+∠OCA=∠OBA+∠ABE,即∠OCA=∠ABE又∠OCA=∠BOE(对顶角)得∠ABE=∠BOE则三角形BCE为