如图ab经过圆o上的点c

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 13:35:16
如图ab经过圆o上的点c
如图,AB是半圆O 的直径,点c是圆O上一点,连接ac,ab

的延长线上取一点E,连接EB,使∠OEB=∠ABC.(1)求证:BE是⊙O的切线(1)证明:∵AB是半圆O的直径,∴∠ACB=90°,∵ODAC,∴∠EDB=90°

如图,P是圆O外一点,PA,PB分别与圆O相切于点A,B,点C是弧AB上一点,经过点C作圆O的切线,分别与PA,PB相交

 (1)在直角三角形AOD,COD中; 根据直角斜边(HL)证全等;      OC=OA, OD=OD;三角

如下图所示,直线AB经过圆O上的点C,并且OA=OB,CA=CB,求证直线AB是圆O的切线

证明:连接OC∵OA=OB,CA=CB,OC=OC∴⊿AOC≌⊿BOC(SSS)∴∠ACO=∠BCO∵∠ACO+∠BCO=180º∴∠ACO=∠BCO=90º即OC⊥AB,根据垂直

如图,直线AB经过⊙O上的点C,AB为⊙O的切线,并且CA=CB,求证:OA=OB.

证明:AB为⊙O的切线,所以OC垂直AB又因为CA=CB,所以,OC为垂直平分线因此有OA=OB

如图,圆O与圆P相交于A.B两点.圆P经过圆心O,点C是圆P的优弧AB上任意一点,连AB.AC,BC,OC.(1)指出

答案是这样的:(1)指出图中与角ACO相等的一个角;∠ACO=∠BCO(2)当点C在圆P什么位置时,直线CA与圆O相切?说明理由.当点在圆O上点D位置时,直线CA与圆O相切连接OP并延长,交圆O于点D

①如图1,已知AB是圆O的直径,点C是圆O上一点,连接BC,AC,过点C作直线CD⊥AB于点D,点E是AB上一点,直线C

话说第一题.很简单.相似三角形概念.(1)点A和点F同在圆上,且都对应弦BC,所以角A=角F,CD垂直于AB,那么角DCB=角A,所以角DCB=角F,因此,三角形FCB相似于三角形CBG,所以BC/B

如图,直线AB经过⊙O上的点C,AB为⊙O的切线,并且CA=CB,OA=OB.求ab是圆o的切线

证明:连接OC∵OA=OB,AC=CB,OC=OC∴△AOC≌△BOC∴∠ACO=∠BCO∵∠ACO+∠BCO=180°∴∠ACO=90°∵C在⊙O上∴AB是⊙O的切线

如图,圆p和圆o相交于AB两点,点p经过点o,c是圆p的优弧AB上的任意一点,弦OC交公共弦ab于点d,连接CA,CB

本题:圆O与圆P相交于A、B两点,则:OP垂直平分AB(证明方法是:连接OA、OB、PA、PB因为OA=OB,PA=PB、PO公共所以,△PAO≌△PBO(SSS)所以,∠APO=∠BPO而在△PAB

如图,C为圆O直径AB上的一动点,过点C的直线交圆O

这道题没有具体的函数关系式这道题主要的是看我们的趋势判断能力因为这里面没有数值写不出具体的关系式只能说是一个抛物线的数值关系你们现在还没有学到高中才有的哈你也可以看看http://baike.baid

如图,已知直线AB经过圆O上的点C,并且0A=OB,CA=CB,那么直线AB是圆O的切线吗?

是.因为O,C都在AB的垂直平分线上,OC垂直AB,同时OC=半径,C必然是切点.

1:如图1 已知直线AB经过圆O上的点C,并且OA=OB,CA=CB,那么直线AB是圆O的切线吗?

第一题用反证法,假设不是切线,即直线跟圆有两个交点,而OA=OB,可得出A、B关于过O点作AB的垂线对称,而该垂线自O点向AB方向与圆仅一个交点;而CA=CB,则C必在AB的中垂线上,同理,另外一点也

如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E,D.

证明连接OC∵OA=OB,CA=CB,∴OC⊥AB,∴AB是⊙O的切线.BC2=BD*BE.证明:∵ED是直径,∴∠ECD=90°,∴∠E+∠EDC=90°.又∵∠BCD+∠OCD=90°,∠OCD=

如图,⊙P与⊙O相交于A、B两点,⊙P经过圆心O,点C是⊙P的优弧AB上任意一点(不与点A、B重合),连接AB、AC、B

:(1)∵OA^=OB^,∴∠ACO=∠BCO;(2)连接OP,AO,并延长与⊙P交于点D若点C在点D位置时,直线CA与⊙O相切理由:连接AD,OA,则∠DAO=90°∴OA⊥DA∴DA与与⊙O相切即

如图,已知△ABC中,∠B=25°,D是AB上一点,以AD为直径的圆O经过点C,交CB 于点E,若∠BCD=10°,求C

如图,连接CO并延长到点F,连接EF,因为这是一个圆,所以CF和AD都是直径,所以∠CEF为90°,因为∠A=55°(可以算出来的),AO=CO,所以∠DOF=180-55-55=70°,因为∠CEF

如图,已知直线AB经过圆O的圆心,且与圆O相交于A,B两点,点C在圆O上且∠AOC=30°点P是直线AB上一个动点

符合条件的点P共有三个.(1)当点P在BA延长线上P1点时:若OQ=P1Q,则∠QOP1=∠QP1O,设∠COQ=X,则∠QP1O=X+30.∠OCQ=X+60=∠OQC. 则:2(X+60