1 (x^2 2X-8)的不定积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 01:46:33
1 (x^2 2X-8)的不定积分
1/(xlnx-x)的不定积分

§dx/[x(lnx-1)]=§dlnx/(lnx-1)=§dlnln(x-1)=lnln(x-1)

2x/(1+x²+x)的不定积分

∫[2x/(x^2+x+1)]dx=∫[(2x+1)/(x^2+x+1)]dx-∫dx/(x^2+x+1)=ln|x^2+x+1|-∫dx/(x^2+x+1)considerx^2+x+1=(x+1/

ln(x+1)的不定积分?

原式=∫ln(x+1)d(x+1)=(x+1)ln(x+1)-∫(x+1)dln(x+1)=(x+1)ln(x+1)-∫(x+1)*1/(x+1)d(x+1)=(x+1)ln(x+1)-∫dx=(x+

sinx/x的不定积分

那肯定是你做错了哈哈哈∫sinx/xdx=∫-1/xdcosx=-cosx/x-∫cosx/x²dx做不到∫sinx/xdx=x*sinx/x-∫x*(xcosx-sinx)/x²

求不定积分 arcsinx的不定积分 e^√x+1的不定积分 (x-1)lnx的不定积分

答:1.∫arcsinxdx可用分部积分原式=xarcsinx-∫x/√(1-x^2)dx=xarcsinx+√(1-x^2)+C2.∫e^(√x+1)dx换元,令√(x+1)=t,则x=t^2-1,

求(x*x)/(x*x+1)的不定积分

=∫x^2/x^2+1dx=∫(x^2+1-1)/x^2+1dx=∫1-(1/x^2+1)dx=x-arctanx+c

∫x/(1-x)dx的不定积分

答:∫[x/(1-x)]dx=∫[(x-1+1)/(1-x)]dx=∫[-1+1/(1-x)]dx=-∫dx-∫[1/(x-1)]d(x-1)=-x-ln|x-1|+C

(√x–1)÷x的不定积分 ,x|x–1|的不定积分,sinx/根号下cosx的不定积分,

求不定积分1.∫[(1/x)√(x–1)]dx令√(x–1)=u,则x-1=u²,x=u²+1;dx=2udu;代入原式得:原式=2∫u²du/(u²+1)=2

求x/(x+1)(x+2)(x+3)的不定积分

1/(x+1)(x+2)(x+3)=1/(x+1)[1/(x+2)-1/(x+3)]=1/[(x+1)(x+2)]-1/[(x+1)(x+3)]=1/(x+1)-1/(x+2)-1/2[1/(x+1)

高等数学不定积分题目,x/(1+根号x)的不定积分

欢迎追问哦!亲再问:�Ǹ���������ӻ��и�X再答:������˼����������Ŀ�ˣ����¥�µ���ʾ������һ�£�

求x/(x^3+8)的不定积分.

x/(x^3+8)=x/[(x+2)(x^2-2x+4)]=A/(x+2)+(Bx+C)/(x^2-2x+4),A=-1/6,B=1/6,C=1/3.x/(x^3+8)=(-1/6)(1/(x+2))

2x/(1+x^2)的不定积分

1/(1+x^2)d(1+x^2)=ln(1+x^2)+C

(x-1)/(x^2+3)的不定积分、、

∫[(x-1)/(x^2+3)]dx=∫[x/(x^2+3)]dx-∫[1/(x^2+3)]dx=(1/2)∫[1/(x^2+3)]d(x^2+3)-(1/√3)∫{1/[(x/√3)^2+1]}d(

(x^3-x+1)sin^2x的不定积分

3次分部积分法解用!代表积分号=!(x^3-x+1)(1-cos2x)/2dx=(x^3-x+1)(x/2-sin2x/4)-!(3x^2-1)(x/2-sin2x/4)dx+c=-!(3x^2-1)