如图ae切圆o于点eat交圆o于点mf.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 05:03:18
1)由圆的性质知:直径所对角为90°则∠BPA=90°,∠FAP=90°那么∠PFA+∠FPA=90°,∠BPF+∠FPA=90°则∠PFA=∠BPF(内错角相等)所以AF∥BE2)显然∠PAC=∠C
连接be,bf由性质知,角aeb=角afb=90度△aeb∽△abc故ae/ab=ab/ac,即ae*ac=ab^2同理△afb∽△abd故af/ab=ab/ad,即af*ad=ab^2所以ae乘ac
∵∠OBA=∠OCA,且∠OAB=∠OCB,又∵∠OBA=∠OAB,∴∠OBA=∠OCB,∵∠BOC=∠BOC,∴△OBD∽△OCB(A.A.),∴r/OC=BD/BC,∴r×BC=OC×BD,同理,
你的问题呢问题是什么啊
证明:连接AC,延长CD交圆O于M.CD垂直AB,则:弧AM=弧AC=弧CE,∠ACM=∠CAE;又AB为直径,∠ACB=90度.故:∠FCG=∠FGC(等角的余角相等)所以,CF=GF.
连接BC,∵AB是直径,∴BC⊥AE,∵DE=DB,∴DC=DB=1/2BE(直角三角形斜边上中结等线斜边的一半),连接OD、OC,∵OD是切线,∴∠OCD=90°,∵OD=OC,OC=OB,∴ΔOD
(1)∵BM²=CM×MD又∵AB为圆O的直径,弦CD⊥AB∴CM=MD=2∴CD=4(2)∵AB为圆O的直径∴∠ACB=90°∵AE切圆O于点A∴∠EAB=90°又∵∠E=∠E∴△EAB与
(1)证明:作直径AG交BC于H,∵AE是⊙O的切线,切点为A,∴AG⊥AD,∵BC∥AE,∴AG⊥BC,∵AG为直径,∴AG是BC的垂直平分线,∴AB=AC,∵BD平分∠ABC,∴∠ABD=∠DBC
因为PA,PB为切线所以PA=PB因为BD⊥PA于点D,AE⊥PB于点E三角形ABP的面积可以表示为二分之一BD*AP或者二分之一AE*BP所以AE=BD因为BD⊥PA,AE⊥PBAB=AB所以三角形
四边形ADCE是菱形.证明:∵MN是AC的垂直平分线,∴AE=CE,AD=CD,OA=OC,∠AOD=∠EOC=90°,∵CE∥AB,∴∠DAO=∠ECO,∴△ADO≌△CEO.(ASA)∴AD=CE
用到四点共圆、射影定理及切割线定理,如图所示:
∵∠ACB=90°(直径对直角)∵CD是角平分线∴∠FCB=∠FCA=45°∵AE垂直CD于H∴∠CAH=45°∴∠CAH=∠FCB又∵∠B=∠E(同弦对等角)∴三角形ACE相似于三角形CFB
1个用45度角可以证,第二个OH=1再问:请问,是怎么证明第二问的,能给个提示吗再答:延长CB与AE相交然后利用等边直角三角形可以求,不懂可以再问我哈
BE是⊙O的切线.[证明]∵AB是⊙O的直径,∴AC⊥BC,∴BC⊥CE,而D是BE的中点,∴CD=BD.∵OC=OB、OD=OD、CD=BD,∴△OCD≌△OCB,∴∠OCD=∠OBD.∵CD切⊙O
1)等边三角形OFA与OBP全等(俩边长都为半径,加上钝角相等),∠3=∠2,∠2=∠1,所以1=3,所以平行2)连接ap,∠EAP=∠4,∠4=∠1,所以∠EAP=∠1,然后三角形CAP与CFA相似
证明:连AC因为C是弧AE的中点所以弧AC=弧EC所以∠CAE=∠ABC因为AB是直径所以∠ACB=90,即∠ACD+∠BCD=90°因为CD⊥AB所以∠CDB=90°即∠ABC+∠BCD
证明:∵等边△ABC,等边△DCE∴AC=BC,DC=EC,∠BAC=∠ABC=∠ACB=∠DCE=60∵∠ACE=∠DCE+∠ACD,∠BCD=∠ACB+∠ACD∴∠ACE=∠BCD∴△ACE≌△B
角cod=60度过d做co垂线勾股定理可求7的平方根再问:答案给我再答:
证明:连接OE.CE=CD,则∠CED=∠CDE;又∠CDE=∠ADO.故∠AED=∠ADO;OE=OA,则∠OEA=∠OAD.OC垂直OA,则∠ADO+∠OAD=90度.所以,∠AED+∠OEA=9