如图ae是半圆o的直径

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 15:25:46
如图ae是半圆o的直径
如图,AB是半圆O 的直径,点c是圆O上一点,连接ac,ab

的延长线上取一点E,连接EB,使∠OEB=∠ABC.(1)求证:BE是⊙O的切线(1)证明:∵AB是半圆O的直径,∴∠ACB=90°,∵ODAC,∴∠EDB=90°

切线题..如图,AB是半圆O的直径,AD为弦,BC是半圆O的切线,OC//AD.(1)求证:CD是半圆O的切线.(2)如

(1)连接OD∵OA=OD∴∠A=∠ODA∵AD‖OC∴∠A=∠BOC,∠COD=∠ODA∴∠COD=∠COB∵OD=OB,OC=OC∴△COD≌△COB∴∠CDO=∠CBO∵BC是切线∴∠OBC=9

如图,MN是半圆O的直径,A,B,C是半圆

270°,连接OA,OB,OC,形成四个等腰三角形AOM,AOB,BOC,CON,角OAM=(180-角AOM)/2,角OAB=(180-角AOB)/2,角BCO=(180-角BOC)/2,角OCN=

急!如图 ab是半圆o的直径,C为圆上一点,过C作半圆的切线

①过C作半圆的切线,∠COB=90度;∠DAC=∠CAB,OA=OC,∠OCA=∠CAB∠COB=∠CAO+∠OCA=∠CAB+∠CAB=∠CAB+∠DAC=∠DAB,OC‖AD,∠ADC=90度;A

如图,bc是半圆o的直径,点D是半圆上一点,过点D作⊙O切线AD,

“5/2为半径的圆的位置关系”连接OD交CE于F,则OD⊥AD.又BA⊥DA,∴OD∥AB.∵OB=OC,∴CF=EF,∴OD⊥CE,则四边形AEFD是矩形,得EF=AD=4.连接OE.在直角三角形O

如图,CD是半圆的直径,O为圆心,E是半圆上一点,且∠EOD=93°,A是DC延长线上一点,AE与半圆相交于点B,如果A

设∠A=x,∵AB=OC,∴∠BOA=x,∴∠EBO=2x,而OB=OE,∴∠AEO=2x,∴∠EOD=∠A+∠AEO,而∠EOD=93°,∴x+2x=93°,∴x=31°,∴∠EOB=180°-4x

如图,BC是半圆O的直径,点G是半圆上任意一点,点A是BG的中点,AD⊥BC求证;1 BE=AE=EF,

BC是半圆O的直径,点G是半圆上任意一点,点A是BG的中点,AD⊥BC于D交BG于E,AC与BG交于F求证;1BE=AE=EF;2,若∠GBC=30°,BC=12根号3求DE长1.证明:连结GC因为B

已知:如图,AB是半圆O的直径,C为AB上一点,AC为半圆O的直径,BD切半圆O/于点D,CE⊥AB交半圆O于点F.

1)连接DO'角O'DB是直角,设大圆半径R小圆半径r,则BD平方=O'B平方-DO'平方即为BD平方=(2R-r)平方-r平方整理得BD平方=4R平方-4Rr因为CE垂直AB,可用射影定理得EB平方

如图,AB是半圆O的直径,AB=4,C、D为半圆O上的两点,且AC=CD=1,求BD.

你能把图给我吗?是初三的吧再问:,。。。再答:我知道了我做的和下边那位的一样很麻烦的如果你是初三的那就这样做吧连接AD,OC交与E点,则角AEC=90度=∠CED可得方程组AE²+CE&su

如图,已知:AB是半圆O的直径,AE是弦,C是弧AE的中点,CD⊥AB于D,交AE于M求证:AM=CM

证明:连接BC因为AB是圆O的直径所以角ACB=角ACD+角BCD=90度因为CD垂直AB于D所以角BDC=90度因为角BDC+角BCD+角B=180度所以角BCD+角B=90度所以角ACD=角B因为

如图,已知AB是半圆O的直径,CD⊥AB,垂足为D,弦AE交CD与点F,求证AC^2=AF·AE

证明:补全圆O的下半部分,并延长CD与圆O的下半部分相交于G(应该能想象到图形吧~)∵CD⊥直径AB,∴AB为CG的垂直平分线∴AC=AG,并且弧AC等于弧AG∴弧AC对应的圆周角∠AEC=弧AG对应

.如图,AB是半圆O的直径,OB是半圆C的直径,半圆O的弦AE切半圆C于F,若AE=8,1:求半圆C的半径2:三

解题思路:此题考查勾股定理在解题中的应用,利用面积差求三角形的面积解题过程:连接CF,则CF⊥AE∵BE⊥AE∴CF∥BE∴AF/AE=CF/BE=AC/AB设OC=r,则AB=4r∵AE=8∴AF=

如图,AB是半圆O的直径,C为半圆上一点,∠CAB的角平分线AE交BC于点D,交半圆O于点E.若AB=10,tan∠CA

∵AB是半圆O的直径,∴∠C=90°.∵tan∠CAB=34,∴BCAC=34.设AC=4k,BC=3k,∵AC2+BC2=AB2,AB=10,∴(4k)2+(3k)2=100.∴k1=2,k2=-2

如图,AB是半圆O的直径,AB=4,C、D为半圆O上的亮点,且AC=CD=1.求BD

这个我来回答!哈哈答案是3.5把AC延长和bd的延长线相交,交点为e可以证明三角形cde和三角形odc是相似的,得出de=0.5然后be=ab=4,然后就有答案了

如图,AB是○O的一条固定直径,它把○O分成上、下两个半圆,自上半圆一点C

连OP,由CP平分∠OCD,得到∠1=∠2,而∠1=∠3,所以有OP∥CD,则OP⊥AB,即可得到OP平分半圆APB.∵CP平分∠OCD,∴∠1=∠2,而OC=OP,有∠1=∠3,∴∠2=∠3,∵OP

如图,BC为半圆O的直径,G是半圆上异于B,C的点,A是弦BG的中点,AD⊥BC于点D,BG交AD于点E,求证AE=BE

延长AD交圆的下部分于F.弦BF=弦BA∴弦BF=弦AG∠BAF=∠ABG所以AE=BE

如图,MN是半圆O的直径,K是MN延长线上一点,直线

35度连接PN,设角NPQ=X,角NMQ=X(同弧所对圆周角)角K+X+90+40+X=180(90是因为直径对的圆周角,180是三角形KPM的内角和)求得X=15,所以角PMN=55,余角PNM=3

如图,AB是圆O的直径,CD是弦,AE⊥CD,BF⊥CD,E,F分别为垂足,BF交半圆于G.

证明:连接AC、AD、AG、DG,∵AB是圆O的直径,∴∠AGB=RT∠,AE⊥CD,BF⊥CD,E,F分别为垂足,∴四边形AEFG是矩形.∴AE=GF,EF//AG,∴∠ADE=∠DAG,∴②弧AC

一道初三几何题:如图:BC是半圆O的直径……

AE=EC=DE=2*根号5三角形ADC为直角三角形DC=2*根号15cot角ABC=BD/DCBD=(2*根号15)*cot角ABC("3*4"是12吗?还是打错了?)BC=2.5*根号15三角形B