如图ae是半圆o的直径弦ab bc 4根号2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 15:14:38
如图ae是半圆o的直径弦ab bc 4根号2
如图,AB是半圆O的直径,AD为弦,BC是半圆O的切线,OC平行AD 1、求证:CD是半圆O的切线 2、若BD=BC=6

(1)AB是半圆O的直径,BC是半圆O的切线,∴∠CBO=90°.连OD.OA=OD,∴∠OAD=∠ODA,OC∥OD,∴∠BOC=∠OAD=∠ODA=∠COD,OB=OD,OC=OC,∴△BOC≌△

切线题..如图,AB是半圆O的直径,AD为弦,BC是半圆O的切线,OC//AD.(1)求证:CD是半圆O的切线.(2)如

(1)连接OD∵OA=OD∴∠A=∠ODA∵AD‖OC∴∠A=∠BOC,∠COD=∠ODA∴∠COD=∠COB∵OD=OB,OC=OC∴△COD≌△COB∴∠CDO=∠CBO∵BC是切线∴∠OBC=9

如图,MN是半圆O的直径,A,B,C是半圆

270°,连接OA,OB,OC,形成四个等腰三角形AOM,AOB,BOC,CON,角OAM=(180-角AOM)/2,角OAB=(180-角AOB)/2,角BCO=(180-角BOC)/2,角OCN=

急!如图 ab是半圆o的直径,C为圆上一点,过C作半圆的切线

①过C作半圆的切线,∠COB=90度;∠DAC=∠CAB,OA=OC,∠OCA=∠CAB∠COB=∠CAO+∠OCA=∠CAB+∠CAB=∠CAB+∠DAC=∠DAB,OC‖AD,∠ADC=90度;A

如图,CD是半圆的直径,O为圆心,E是半圆上一点,且∠EOD=93°,A是DC延长线上一点,AE与半圆相交于点B,如果A

设∠A=x,∵AB=OC,∴∠BOA=x,∴∠EBO=2x,而OB=OE,∴∠AEO=2x,∴∠EOD=∠A+∠AEO,而∠EOD=93°,∴x+2x=93°,∴x=31°,∴∠EOB=180°-4x

如图,BC是半圆O的直径,点G是半圆上任意一点,点A是BG的中点,AD⊥BC求证;1 BE=AE=EF,

BC是半圆O的直径,点G是半圆上任意一点,点A是BG的中点,AD⊥BC于D交BG于E,AC与BG交于F求证;1BE=AE=EF;2,若∠GBC=30°,BC=12根号3求DE长1.证明:连结GC因为B

已知:如图,AB是半圆O的直径,C为AB上一点,AC为半圆O的直径,BD切半圆O/于点D,CE⊥AB交半圆O于点F.

1)连接DO'角O'DB是直角,设大圆半径R小圆半径r,则BD平方=O'B平方-DO'平方即为BD平方=(2R-r)平方-r平方整理得BD平方=4R平方-4Rr因为CE垂直AB,可用射影定理得EB平方

如图,已知:AB是半圆O的直径,AE是弦,C是弧AE的中点,CD⊥AB于D,交AE于M求证:AM=CM

证明:连接BC因为AB是圆O的直径所以角ACB=角ACD+角BCD=90度因为CD垂直AB于D所以角BDC=90度因为角BDC+角BCD+角B=180度所以角BCD+角B=90度所以角ACD=角B因为

如图AE是半圆O的直径,弦AB=BC=4根号二,弦CD=DE=4,连结OB,OD,则图中 两个阴影部分的面积和为

根据弦AB=BC,弦CD=DE,可得∠BOD=90°,∠BOD=90°,过点O作OF⊥BC于点F,OG⊥CD于点G,在四边形OFCG中可得∠FCD=135°,过点C作CN∥OF,交OG于点N,判断△C

如图,已知AB是半圆O的直径,CD⊥AB,垂足为D,弦AE交CD与点F,求证AC^2=AF·AE

证明:补全圆O的下半部分,并延长CD与圆O的下半部分相交于G(应该能想象到图形吧~)∵CD⊥直径AB,∴AB为CG的垂直平分线∴AC=AG,并且弧AC等于弧AG∴弧AC对应的圆周角∠AEC=弧AG对应

如图1,大半圆o与小半圆o1是同心圆,直径cd与mn在同一直线上,大半圆的弦ab与小半圆相切于点f,

郭敦顒回答:(1)条件中没有大圆或小圆半径的数值,求不出半圆中阴影部分的面积,而且也未显示出半圆中阴影部分为何部.(2)不论是否给出了半径的数值和半圆中阴影部分在何处(但必须是弓形部位或两侧部位),若

.如图,AB是半圆O的直径,OB是半圆C的直径,半圆O的弦AE切半圆C于F,若AE=8,1:求半圆C的半径2:三

解题思路:此题考查勾股定理在解题中的应用,利用面积差求三角形的面积解题过程:连接CF,则CF⊥AE∵BE⊥AE∴CF∥BE∴AF/AE=CF/BE=AC/AB设OC=r,则AB=4r∵AE=8∴AF=

如图,AB是半圆O的直径,C为半圆上一点,∠CAB的角平分线AE交BC于点D,交半圆O于点E.若AB=10,tan∠CA

∵AB是半圆O的直径,∴∠C=90°.∵tan∠CAB=34,∴BCAC=34.设AC=4k,BC=3k,∵AC2+BC2=AB2,AB=10,∴(4k)2+(3k)2=100.∴k1=2,k2=-2

如图1,大半圆o与小半圆o1是同心圆,直径cd与mn在同一直线上,大半圆的弦ab与小半圆相切于点f ,且ab平行于cd,

(1)连接OA、OB、OF,角AOF=90度根据勾股定理AF^2=OA^2-OF^2=大圆半径^2-小圆半径^2=(1/2AB)^2=(6/2)^2=9阴影部分的面积=1/2(大圆面积-小圆面积)=1

已知:如图,AB是半圆O的直径,AD为弦,角DBC=角 DAB

1、因为角ADB为直径所对圆周角所以,角ADB=90度角DAB+角DBA=90度又因为角DBC=角DAB所以角DBC+角DBA=90度即角ABC=90度BC为半圆O的切线2、因为OC平行于AD,而且O

如图,BC为半圆O的直径,G是半圆上异于B,C的点,A是弦BG的中点,AD⊥BC于点D,BG交AD于点E,求证AE=BE

延长AD交圆的下部分于F.弦BF=弦BA∴弦BF=弦AG∠BAF=∠ABG所以AE=BE

如图,在圆O中,直径AB=10,C、D是上半圆AB上的两个动点.弦AC与BD交于点E,则AE?AC+BE?BD=____

连接BC,AD,根据直径所对的圆周角是直角,得∠C=∠D=90°,根据相交弦定理,得AE?CE=DE?EB∴AE?AC+BE?BD=AC2-AC?CE+BD2-BD?DE=100-BC2+100-AD

如图,MN是半圆O的直径,K是MN延长线上一点,直线

35度连接PN,设角NPQ=X,角NMQ=X(同弧所对圆周角)角K+X+90+40+X=180(90是因为直径对的圆周角,180是三角形KPM的内角和)求得X=15,所以角PMN=55,余角PNM=3

如图,AB是圆O的直径,CD是弦,AE⊥CD,BF⊥CD,E,F分别为垂足,BF交半圆于G.

证明:连接AC、AD、AG、DG,∵AB是圆O的直径,∴∠AGB=RT∠,AE⊥CD,BF⊥CD,E,F分别为垂足,∴四边形AEFG是矩形.∴AE=GF,EF//AG,∴∠ADE=∠DAG,∴②弧AC

一道初三几何题:如图:BC是半圆O的直径……

AE=EC=DE=2*根号5三角形ADC为直角三角形DC=2*根号15cot角ABC=BD/DCBD=(2*根号15)*cot角ABC("3*4"是12吗?还是打错了?)BC=2.5*根号15三角形B