如图cd是 abc的中线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 23:06:57
cd是斜边ab上的中线,de是三角形acd的中线可得AD/AB=1/2AE/AC=1/2还有一个公共角A所以三角形ABC与三角形AD相似.所以角AED=角ACB=90°所以ED⊥ACBD垂直AC所以D
(1)△ABC是直角三角形;(2)延长CD至E,使得CD=DE,∵AB与CE互相平分,∴四边形AEBC是平行四边形∵4CD2=CE2,所以AC2+BC2=CE2,所以∠CAE为直角,又∵四边形AEBC
证明:过A作CB平行线,交CD延长线于F∵CN=MN∴∠1=∠3=∠4(等边对等角、对顶角)又 AF//CB∴∠1=∠F(内错角相等)∴∠4=∠F∴AM=AF(等角对等边)∵CD是△ABC的
过A作CB平行线,交CD延长线于F,使得AF//CB因为CN=MN所以角MCN=角CMN=角AMD又因为AF//CB由两直线平行,内错角相等角MCN=角AFD故角AFD=角AMD所以AM=AF下面再证
(1)证明:∵CD为AB的中线所以D为AB的中点又∵DF∥AC∴DF=1/2AE(三角形中位线)又∵AE=2EC∴DF=EC因为EC=1/3AC所以DF=3分之1AC(2)证明:∵DF=EC(上面已证
解由E是AC的中点,F是AD的中点即FE//CD所以SΔAEF/SΔADC=(AE/AC)²=(1/2)²=1/4则SΔADC=4SΔAEF=4又有CD是ΔABC的中线即SΔABC
EF=1/2ABCD=1/2AB所以CD=EF
∵DE是AC的中线∴AE:AC=1:2又∵CD是AB的中线∴AD:AB=1:2∴AE:AC=AD:AB且AE,AC,AD,AB在一个三角形中∴DE//BC
∵Rt三角形且D是AB中点∴AD=CD;∵AC中点∴DE⊥AC;∴∠AED=∠ACB=90°;∴DE‖BC
根据题意:D是AB中点,E是AC中点,那么DE是Rt△ABC的中位线.那么DE‖BC
cd是斜边ab上的中线,de是三角形acd的中线可得AD/AB=1/2AE/AC=1/2还有一个公共角A所以三角形ABC与三角形AD相似.所以角AED=角ACB=90°所以ED⊥ACBD垂直AC所以D
角ACD=x角CDB=2x角DCB=90-x(这题就是反复用了等边对等角)第二问好像与图不符啊!
是直角三角形,因为CD是AB的中线,且CD=1/2AB,所以CD=AD=BD,所以∠A=∠ACD,∠B=∠BCD,由三角形内角和180,∠A+∠ACD+∠B+∠BCD=180所以2(∠ACD+∠BCD
因为CD是中线,所以AD=DB,且DC=1/2AB所以AD=BD=CD所以三角形ACD与三角形CDB是等腰三角形.由此得出,角DCB=角B角A=角ACD所以角DCB+角B+角A+角ACD=180°角A
作AE∥BC交CD延长线于E,∴∠EAD=∠CBD,∠E=MCN∠ADE=∠BDC,且AD=BD∴△ADE≌△BDC∴AE=BC,又∵CN=MN∴∠MCN=∠CMN,又∵∠AME=∠CMN∴∠AME=
先画图:做BE垂直于AC交延长线于E,因为CE垂直于ACCD垂直于AC所以CD//BE又因为角DCB=45所以角BCE=45所以CE=BE所以AC=CE=BE所以sinA=1/根号5
方法一:延长CD交AM的延长线于E.∵AB∥CE,∴∠ABM=∠ECM、∠BAM=∠CEM,又BM=CM,∴△ABM≌△ECM,∴AB=EC.∵AB∥ED,∴∠DEA=∠BAE,又∠BAE=∠DAE,
证明:因为EF是中位线,CD是斜边AB上的中线所以:CD=1/2ABEF‖AB且EF=1/2AB所以:EF=DC直角三角形中,斜边中线等于斜边一半三角形中位线平行且等于底边的一半...你的好评是我前进
由于三角形ade与abc相似,所以角ADE=角B,所以平行相似是因为角A一样,AD/AB=AE/AC