如图CE垂直AB,BF垂直AC,CE与BF相交与点D,且BD=CD

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:33:29
如图CE垂直AB,BF垂直AC,CE与BF相交与点D,且BD=CD
已知,如图,BE=CF,BF垂直AC于F,CE垂直AB于E,BF和CE交于点D.求证AD平分角BAC.

∵BF⊥ACCE⊥AB∴∠BED=∠AED=∠CFD=∠AFD∵∠EDB=∠CDF∠BED=∠CFDBE=CF∴△BED≌△CFD∴DE=DF∵DE=DFAD=AD∠AED=∠AFD∴△AED≌△AF

如图,在三角形ABC中,AD平分角BAC,CE垂直AD,BF垂直AD,求证AB/AC=DF/DE

证明:根据已知条件在三角形ABF和三角形ACE中:角ABF=角CAE,角AFB=角AEC所以,三角形ABF和三角形ACE相似.AB/AC=BF/CE(1)在三角形BDF和三角形CDE中:角BDF=角C

如图,AB=CD,BE垂直AC,BF垂直AC,E,F是垂足,DE=BF证明AF=CE AB平行于CD

△ABF和△DEC.有2边相等,且是直角三角形,所以.2个三角形相似.所以另外一边也相等,也就是AF=CE其次因为相似,所以∠C=∠A所以AB//CD

如图,已知AB垂直BD,ED垂直BD,AC垂直CE,且AB等于CD,求证:AC等于CE.

因为两个三角形为直角三角形,所以角A+角ACB=90°,因为AC垂直于CE,所以角ACB+角DCE=90°,所以角A=角DCE.又因为角B=角D=90°,AB=CD,所以三角形ABC全等于三角形CDE

已知如图D是三角形ABC的BC边上的中点 DE垂直AC DF垂直AB 垂足分别为EF 且BF=CE

证明;因为DE垂直ACDF垂直AB所以;角BFD=角CED=90度在△FBD和△ECD中,角BFD=角CED=90度,BF=CE,BD=CD,所以;△FBD和△ECD全等,角ABC=角ACB所以;△A

如图,等腰三角形ABC,AB=AC,点E,F分别是AB,AC的中点,CE垂直BF与点O,

(1)∵EF是△ABC的中位线,∴EF‖BC,由AB=AC,∴BE=CF.即梯形EFCB是等腰梯形.(2)∵△EFO是等腰直角三角形,∴EF²=EO²+FO²∴BC&su

已知:如图,在三角形ABC中,BF=CE,DF垂直AB,DE垂直AC,垂足分别是F,E,DF=DE,

∵∠BFD=∠DEC=90°∴∠DFA=∠DEA=90°AF平方=AD平方-DF平方(勾股定理)AE平方=AD平方-DE平方∴DF=DE又∵BF=CE∴AB=AC再问:非常感谢。

如图,已知:在三角形ABC中,BD垂直AC于D,CE垂直AB于E,F是BD上一点,BF=AC,G是CE延长线上一点,CG

(1)证明:因为BD垂直AC于D,所以角ADB=90度,因为CE垂直AB于E,所以角AEC=90度,即角ADB=角AEC=90,角BAD=角CAE(公共角),所以三角形ADB和三角形AEC相似,所以角

如图,已知在三角形abc中,bd垂直ac于d,ce垂直ab于e,f是bd上一点,bf等于ac,g是ce延长线上一点,cg

(1)证明:因为BD垂直AC于D,所以角ADB=90度,因为CE垂直AB于E,所以角AEC=90度,即角ADB=角AEC=90,角BAD=角CAE(公共角),所以三角形ADB和三角形AEC相似,所以角

如图,BD=CD,BF垂直AC于F,CE垂直AB于E,求证:D在角BAC的平分线上

证明:在直角三角形DEB和直角三角形DFC中角EDB=角FDC角DEB=角DFC=90°所以角B=角C又BD=DC所以三角形FDC全等与三角形EDB所以DE=DF根据角的平分线定理,角平分线上任意一点

如图,AB=AC,CE垂直CB,BD垂直BC,求证,AD=AE

虚线连接DE,虚线与AB连接点为F,与AC连接的点为G,因为垂直关系,CE垂直CB,BD垂直BC,证明BDEC为长方形,然后根据AB=AC,证明角ABC=角ACB,然后,因为BC平行于DE,就证明了角

如图在三角形abc中ad为bc边上中线ce垂直ab bf垂直ad 求证ce等于bf 2

(1)由于BD=DC,所以直角三角形BDF与CDE全等,所以BF=CE(2)根据全等三角形,DF=DE,AE+AF=AD-DE+AD+DF=2AD=20所以AD=10

如图,BD=CD,BF垂直AC,CE垂直AB.求证:点D在角BAC的角平分线上.

因为角EDB和角FDC是对角所以角EDB=角FDC又因BF垂直AC,CE垂直AB所以角BFD和角CFD都等于90度./角BFD=角CFD;角AED=角AFD因为BD=CD,所以EB=FC,因为AD为公

如图,AC垂直BC,AD垂直BD,AD=BC,CE垂直AB,DF垂直AB,垂足分别为E、F.求证:CE=DF.

∵AC⊥BC,AD⊥BD∴∠ACB=∠BDA=90°在Rt△ACB和Rt△BDA中AB=BAAD=BC∴Rt△ACB≌Rt△BDA∴∠ABC=∠BAD又∵CE⊥AB,DF⊥AB∴∠AFD=∠BEC=9

证明题:如图:AB垂直BD,ED垂直BD,AB=CD,BC=DE,求证AC垂直CE

因为AB垂直BD,ED垂直BD,所以角B=角D=90度,又因为AB=CD,BC=DE,所以三角形abc全等于三角形cdb,所以角a=角ecd又因为角a+角acb=90度,所以角ecd+角acb=90度

已知:如图,ab=cd,de垂直ac,bf垂直 ac,e,f是垂足,de等于bf.求证:af等于ce

证明:(1)∵DE⊥AC,BF⊥AC,在△ABF和△CDE中,AB=CDDE=BF,∴△ABF≌△CDE(HL).∴AF=CE.

如图,在三角形ABC中,AC=BC,CD垂直AB于D,CE平分角ACD,BF垂直CE交CE于G,交AC于F,交CD于H.

证明:过点A作AB的垂线,交BF的延长线于M.AC=BC,CD⊥AB,则AD=BD;AM平行CD,则DH/AM=BD/BA=1/2,DH=AM/2.----------(AM的一半)CE平分∠ACD,

已知,如图,BE=CF,BF垂直于AC于F,CE垂直于AB于E,BF和CE交于点D,求证:

证明:∵BF⊥AC,CE⊥AB∴∠AEC=∠AFB=90,∠BFC=∠CEB=90∵BE=CF,∠BDE=∠CDF∴△BDE≌△CDF(AAS)∴DE=DF∵AD=AD∴△ADE≌△ADF(HL)∴∠

已知:如图,AB=CD DE垂直AC BF垂直AC E、F是垂足 ,DE=BF.求证:AF=CE 且AB平行CD.

证明:∵DE⊥AC,BF⊥AC∴∠CED=∠AFB=90º又∵AB=CD,BF=DE∴Rt⊿ABF≌Rt⊿CDE(HL)∴AF=CE∠BAF=∠DCE∴AB//CD【内错角相等】